Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2109-2119    DOI: 10.3785/j.issn.1008-973X.2020.11.006
    
Deformation characteristics of fine-grained soil under cyclic dynamic loading with intermittence
Ya-feng LI1(),Ru-song NIE1,2,*(),Wu-ming LENG1,2,Long-hu CHENG1,Hui-hao MEI1,Jun-li DONG1
1. School of Civil Engineering, Central South University, Changsha 410075, China
2. MOE Key Laboratory of Engineering Structures of Heavy Haul Railway, Central South University, Changsha 410075, China
Download: HTML     PDF(4301KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In view of the fact that the dynamic train loading on the railway subgrade is the periodic vibration loading when the train passes and the intermittence when no train passes, a series of continuous and continuous-stopping vibration triaxial tests under different confining pressures, mass fractions of water and dynamic stress conditions were carried out to study the excess pore water pressure, elastic strain, resilience modulus and cumulative plastic strain of fine-grained soil under intermittent cyclic loading. Results show that the loading intermittence has a significant effect on the deformation characteristics of subgrade. Due to the unloading and drainage in the intermittent stage, the excess pore water pressure accumulated in the loading stage dissipates in the intermittent stage, and the particles and structure of the soil are also adjusted, thus the resistance of the samples to subsequent loading is improved. In addition, the intermittent stage significantly slows down the development of plastic strain in the subsequent loading stages and reduces the accumulated plastic strain of samples. However, the intermittent effect on improving the resilience modulus and reducing the elastic strain is limited. The continuous-stopping vibration can better simulate the actual train loads, and provides more practical test results.



Key wordsfine-grained soil      dynamic triaxial test      cyclic loading with intermittence      deformation characteristics      excess pore water pressure     
Received: 22 November 2019      Published: 15 December 2020
CLC:  TU 431  
Corresponding Authors: Ru-song NIE     E-mail: 174801019@csu.edu.cn;nierusong97@csu.edu.cn
Cite this article:

Ya-feng LI,Ru-song NIE,Wu-ming LENG,Long-hu CHENG,Hui-hao MEI,Jun-li DONG. Deformation characteristics of fine-grained soil under cyclic dynamic loading with intermittence. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2109-2119.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.006     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2109


间歇性循环荷载作用下细粒土的变形特性

铁路路基承受的列车动荷载作用由列车通过时产生的周期性振动和无列车通过时的加载间歇组成, 针对此工程背景,开展不同围压、水的质量分数、动应力条件下的连续加载与加载-停振的动三轴试验,研究间歇性循环荷载作用下细粒土的超孔隙水压力、弹性应变、回弹模量和累积塑性应变的变化规律. 试验结果表明,加载间歇对路基变形特性有显著影响. 由于加载间歇阶段试样卸载以及排水作用,试样在加载阶段积累的超孔隙水压力在间歇阶段消散,土体内部颗粒及结构得到调整,试样抵抗后续荷载的能力得到提高. 此外,加载间歇显著减缓了后续加载阶段的塑性应变发展,降低了试样的累积塑性应变. 加载间歇对提高试样回弹模量、降低弹性应变的效果有限. 加载-停振的间歇加载方式可以更准确地模拟实际列车荷载作用,进而获得更具实际意义的试验结果.


关键词: 细粒土填料,  动三轴试验,  间歇性循环荷载,  变形特性,  超孔隙水压力 
Fig.1 Subgrade of Shuo-huang heavy haul railway
Fig.2 Test soil excavated from site
ρdmax /(g?cm–3 wopt / % wL / % wP / % IP
1.96 11.80 26.00 18.20 7.8
Tab.1 Soil physical properties
Fig.3 Grain size distribution of fine-grained soil
Fig.4 DDS-70 microcomputer control dynamic triaxial instrument
Fig.5 Waveform of stress loading in test
试验序列 水的质量分数 试验类型 σ3 /kPa σd /kPa
S-1 wopt=11.80% 连续加载 30、60 120
S-2 wopt=11.80% 间歇加载(停振时长1000 s) 30 60、90、120
S-3 wopt=11.80% 间歇加载(停振时长1000 s) 60 60、90、120
S-4 wopt=11.80% 间歇加载(停振时长1000 s) 90 90、120、150、180、210
S-5 wsat=19.75% 连续加载 30、60 30
S-6 wsat=19.75% 间歇加载(停振时长1000 s) 30 30、60、90
S-7 wsat=19.75% 间歇加载(停振时长1000 s) 60 30、60、90、120
S-8 wsat=19.75% 间歇加载(停振时长1000 s) 90 30、60、90、120、150、180、210
S-9 wB=15.00% 间歇加载(停振时长1000 s) 30 30、60、90
Tab.2 Dynamic triaxial test programs
Fig.6 Time history curves of axial strain
Fig.7 Curves of elastic strain and plastic strain with vibration cycles
Fig.8 Determination of elastic modulus based on dynamic stress-strain curves
Fig.9 Change curves of excess pore water pressure of samples which were stable under continuous and intermittent loading
Fig.10 Change curves of excess pore water pressure of samples which were failed under continuous loading but stable under intermittent loading
Fig.11 Sample deformation with different water mass fractions under intermittent loading(σ3=30 kPa,σd=90 kPa)
Fig.12 Samples which was failed under continuous loading but stable under intermittent loading(wopt =11.80%,σd=120 kPa)
Fig.13 Samples which were stable under continuous and intermittent loading(wsat=19.75%,σd=30 kPa)
Fig.14 Change curves of cumulative plastic strain with vibration cycles
Fig.15 Cumulative plastic strain of samples which were stable under continuous and intermittent loading at each loading stage(wsat=19.75%,σ3=30 kPa,σd=30 kPa)
Fig.16 Cumulative plastic strain of samples which was failed under continuous loading but stable under intermittent loading at each loading stage (wopt=11.80%,σ3=60 kPa,σd=120 kPa)
wB σ3 /kPa σd /kPa 停振阶段应变的回弹量/%
第1停
振阶段
第2停
振阶段
第3停
振阶段
第4停
振阶段
wopt=11.80% 30 60 0.04 0.03 0.05 0.03
90 0.02 0.04 0.02 0.03
120 0.05 0.03 0.04 0.03
60 60 0.02 0.02 0.03 0.04
90 0.06 0.03 0.04 0.02
120 0.02 0.03 0.04 0.05
90 90 0.03 0.04 0.03 0.02
120 0.02 0.03 0.02 0.05
150 0.05 0.01 0.05 0.03
wsat=19.75% 30 30 0.02 0.04 0.03 0.03
60 0.05 ? ? ?
60 30 0.02 0.02 0.04 0.02
60 0.02 0.04 0.03 0.04
90 30 0.03 0.04 0.02 0.03
60 0.04 0.06 0.04 0.03
90 0.02 0.04 0.03 0.04
Tab.3 Values of strain rebounded in intermittent stages
Fig.17 Variation of axial strain in loading stages and intermittent stages under intermittent loading
[1]   HU X Q, ZHANG Y, GUO L, et al Cyclic behavior of saturated soft clay under stress path with bidirectional shear stresses[J]. Soil Dynamics and Earthquake Engineering, 2018, 104: 319- 328
doi: 10.1016/j.soildyn.2017.10.016
[2]   周文权, 冷伍明, 刘文劼, 等 低围压循环荷载作用下饱和粗粒土的动力特性与骨干曲线模型研究[J]. 岩土力学, 2016, 37 (2): 415- 423
ZHOU Wen-quan, LENG Wu-ming, LIU Wen-jie, et al Dynamic behavior and backbone curve model of saturated coarse-grained soil under cyclic loading and low confining pressure[J]. Rock and Soil Mechanics, 2016, 37 (2): 415- 423
[3]   GU C, WANG Y Z, CUI Y J, et al One-way cylic behavior of saturated clay in 3D stress state[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145 (10): 04019077
doi: 10.1061/(ASCE)GT.1943-5606.0002137
[4]   CERNI G, CARDONE F, VIRGILI A, et al Characterisation of permanent deformation behaviour of unbound granular materials under repeated triaxial loading[J]. Construction and Building Materials, 2012, 28 (1): 79- 87
doi: 10.1016/j.conbuildmat.2011.07.066
[5]   ERLINGSSON S, MAGNUSDOTTIR B. Dynamic triaxial testing of unbound granular base course materials [C]// Proceedings of the 6th International Conference on the Bearing Capacity of Roads and Airfields. Lisbon: Portugal, 2002: 24-26.
[6]   RAHMAN M S, ERLINGSSON S Predicting permanent deformation behaviour of unbound granular materials[J]. International Journal of Pavement Engineering, 2015, 16 (7): 587- 601
doi: 10.1080/10298436.2014.943209
[7]   黄博, 丁浩, 陈云敏 高速列车荷载作用的动三轴试验模拟[J]. 岩土工程学报, 2011, 33 (2): 195- 202
HUANG Bo, DING Hao, CHEN Yun-min Simulation of high-speed train load by dynamic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (2): 195- 202
[8]   冷伍明, 周文权, 聂如松, 等 重载铁路粗粒土填料动力特性及积累变形分析[J]. 岩土力学, 2016, 37 (3): 728- 736
LENG Wu-ming, ZHOU Wen-quan, NIE Ru-song, et al Analysis of dynamic characteristics and accumulative deformation of coarse-grained soil filling of heavy-haul railway[J]. Rock and Soil Mechanics, 2016, 37 (3): 728- 736
[9]   周文权, 冷伍明, 蔡德钩, 等 循环荷载作用下路基粗粒土填料临界动应力和积累变形特性分析[J]. 铁道学报, 2014, 36 (12): 84- 89
ZHOU Wen-quan, LENG Wu-ming, CAI De-gou, et al Analysis on characteristics of critical dynamic stress and accumulative deformation of coarse--grained soil subgrade filling under cyclic loading[J]. Journal of the China Railway Society, 2014, 36 (12): 84- 89
[10]   梅慧浩, 冷伍明, 刘文劼, 等 持续动荷载作用下基床粗粒土填料累积塑性应变试验研究[J]. 铁道学报, 2017, 39 (2): 119- 126
MEI Hui-hao, LENG Wu-ming, LIU Wen-jie, et al Experimental study on accumulated plastic strain of coarse grained soil filling in subgrade bed under persistent dynamic loading[J]. Journal of the China Railway Society, 2017, 39 (2): 119- 126
[11]   PUMPHREY N D, LENTZ R W Deformation analyses of Florida highway subgrade sand subjected to repeated load triaxial tests[J]. Transportation Research Record, 1986, 1089: 49- 56
[12]   TANG L, YAN M H, LING X Z, et al Dynamic behaviours of railway’s base course materials subjected to long-term low-level cyclic loading: experimental study and empirical model[J]. Geotechnique, 2017, 67 (6): 537- 545
doi: 10.1680/jgeot.16.P.152
[13]   SALOUR F, ERLINGSSON S Permanent deformation characteristics of silty sand subgrades from multistage RLT tests[J]. International Journal of Pavement Engineering, 2015, 1- 11
[14]   LI D, SELIG E T Resilient modulus for fine-grained subgrade soil[J]. Journal of Geotechnical Engineering, 1994, 120 (6): 939- 957
doi: 10.1061/(ASCE)0733-9410(1994)120:6(939)
[15]   RAHIM A M Subgrade soil index properties to estimate resilient modulus for pavement design[J]. International Journal of Pavement Engineering, 2005, 6 (3): 163- 169
doi: 10.1080/10298430500140891
[16]   SHE W, CAO X, ZHAO G, et al Experimental and numerical investigation of the effect of soil type and fineness on soil frost heave behavior[J]. Cold Regions Science and Technology, 2018, 148: 148- 158
doi: 10.1016/j.coldregions.2018.01.015
[17]   莫海鸿, 单毅, 马灏, 等 软土动剪切模量与微观孔隙结构试验研究[J]. 岩石力学与工程学报, 2016, 35 (7): 1445- 1451
MO Hai-hong, SHAN Yi, MA Hao, et al Experimental study of dynamic shear moduli and microscopic-pore structure of soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (7): 1445- 1451
[18]   李学, 张鹏, 宋晶 饱和细粒土固结的三维多尺度结构演化及微宏观性质分析[J]. 天津大学学报: 自然科学与工程技术版, 2019, 52 (Suppl. 1): 76- 83
LI Xue, ZHANG Peng, SONG Jing Three-dimensional structural evolution and multiscale and micro-macro property analysis in the consolidation of saturated fine-grained soil[J]. Journal of Tianjin University: Science and Technology, 2019, 52 (Suppl. 1): 76- 83
[19]   王淑云, 鲁晓兵, 赵京, 等 粉质黏土周期荷载后的不排水强度衰化特性[J]. 岩土力学, 2009, 30 (10): 2991- 2995
WANG Shu-yun, LU Xiao-bing, ZHAO Jing, et al Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. Rock and Soil Mechanics, 2009, 30 (10): 2991- 2995
[20]   丁建宇, 王朝亮, 杜运国, 等 排水条件下阶段性循环荷载作用对饱和软黏土动力特性影响[J]. 世界地震工程, 2017, 33 (2): 161- 168
DING Jian-yu, WANG Chao-liang, DU Yun-guo, et al Influence of staged cyclic loading on dynamic behavior of saturated soft clay under drained condition[J]. World Earthquake Engineering, 2017, 33 (2): 161- 168
[21]   刘添俊, 葛修润, 安关峰 单向循环荷载作用下饱和软黏土的性状研究[J]. 岩石力学与工程学报, 2012, 31 (Suppl. 1): 3345- 3351
LIU Tian-jun, GE Xiu-run, AN Guan-feng Study of characteristics of saturated soft clay under uniaxial cyclic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (Suppl. 1): 3345- 3351
[22]   WERKMEISTER S, DAWSON A R, WELLNER F Permanent deformation behavior of granular materials and the shakedown concept[J]. Transportation Research Record, 2001, 1757 (1): 75- 81
doi: 10.3141/1757-09
[23]   WERKMEISTER S, DAWSON A R, WELLNER F Pavement design model for unbound granular materials[J]. Journal of Transportation Engineering, 2004, 130 (5): 665- 674
doi: 10.1061/(ASCE)0733-947X(2004)130:5(665)
[24]   YILDIRIM H, ERSAN H Settlements under consecutive series of cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2007, 27 (6): 577- 585
doi: 10.1016/j.soildyn.2006.10.007
[25]   王军, 蔡袁强, 郭林, 等 分阶段循环加载条件下温州饱和软黏土孔压和应变发展规律[J]. 岩土工程学报, 2012, 34 (7): 1349- 1354
WANG Jun, CAI Yuan-qiang, GUO Lin, et al Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (7): 1349- 1354
[26]   何绍衡, 郑晴晴, 夏唐代, 等 考虑时间间歇效应的地铁列车荷载下海相软土长期动力特性试验研究[J]. 岩石力学与工程学报, 2019, 38 (2): 353- 364
HE Shao-heng, ZHENG Qing-qing, XIA Tang-dai, et al Experimental on long-term dynamic characteristics of marine soft soil under metro train load considering time intermittent effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (2): 353- 364
[27]   铁道第一勘察设计院. 铁路路基设计规范: TB10001—2016 [S]. 北京: 中国铁道出版社, 2016.
[28]   李子春. 轨道结构垂向荷载传递与路基附加动应力特性的研究[D]. 北京: 铁道部科学研究院, 2000.
LI Zi-chun. Study on the vertical load transmision through the track structure and the characteristics of subgrade dynamic stress [D]. Beijing: China Academy of Railway Sciences, 2000.
[29]   MEI H H, LENG W M, NIE R S, et al Random distribution characteristics of peak dynamic stress on the subgrade surface of heavy-haul railways considering track irregularities[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 205- 214
doi: 10.1016/j.soildyn.2018.10.013
[30]   MEI H H, LENG W M, NIE R S, et al Experimental research on the dynamic response characteristics of transition subgrade induced by heavy-haul train passage[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233 (9): 974- 987
[31]   TAO M J, MOHAMMAD L N, NAZZAL M D, et al Application of shakedown theory in characterizing traditional and recycled pavement base materials[J]. Journal of Transportation Engineering, 2010, 136 (3): 214- 222
doi: 10.1061/(ASCE)0733-947X(2010)136:3(214)
[32]   GU F, ZHANG Y Q, LUO X, et al Characterization and prediction of permanent deformation properties of unbound granular materials for Pavement ME Design[J]. Construction and Building Materials, 2017, 155: 584- 592
doi: 10.1016/j.conbuildmat.2017.08.116
[33]   谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011.
[34]   SEED H B, CHAN C K, LEE C E. Resilience characteristics of subgrade soils and their relation to fatigue failures in asphalt pavements [C]// Proceedings of theInternational Conference Structure Design of Asphalt Pavements. Ann Arbor: Michigan, 1962: 61l-636.
[35]   DUONG T V, CUI Y J, TANG A M, et al Effects of water and fines contents on the resilient modulus of the interlayer soil of railway substructure[J]. Acta Geotechnica, 2016, 11 (1): 51- 59
[36]   侯晓亮, 周建华, 赵晓豹, 等 南京河西淤泥质粉质粘土卸荷回弹变形研究[J]. 防灾减灾工程学报, 2011, 31 (4): 397- 402
HOU Xiao-liang, ZHOU Jian-hua, ZHAO Xiao-bao, et al Research on unloading rebound deformation of muddy silty clay at Hexi district in Nanjing city[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31 (4): 397- 402
[37]   王东. 不同轴向卸荷强度下饱和粉土力学特性试验研究[D]. 杭州: 浙江工业大学, 2018.
WANG Dong. Experimental study on mechanical properties of saturated silt under different axial unloading strength [D]. Hangzhou: Zhejiang University of Technology, 2018.
[1] Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.
[2] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.
[3] YU Xiang, KONG Xian-jing, ZOU De-gao. Deformation and stress distribution characteristics of concrete cut-off wall[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1704-1711.
[4] YING Hong-wei,ZHANG Li-sha,XIE Kang-he,HUANG Da-zhong. Pore and earth pressure response to groundwater fluctuation out of foundation pit[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 492-497.