Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (8): 1594-1601    DOI: 10.3785/j.issn.1008-973X.2019.08.018
Electric Engineering, Mechanical Engineering     
Thermal error compensation of static pressure turntable based on support vector machine
Zhi HUANG(),Zhen-jie JIA,Tao DENG,Yong-chao LIU,Li DU
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Download: HTML     PDF(1238KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The code of third-party tool software such as MATLAB cannot be run in the hardware of general compensators, which leads to the fact that most models cannot be applied to the actual compensation of the thermal error of machine tools. A real-time compensation method for thermal error of static-pressure turntable was proposed, in order to improve the efficiency of error modeling and reduce the hardware requirements of the compensation system. The compensation method is based on the support vector machine (SVM). The fish population algorithm and the wolf group algorithm are used to optimize the core parameters of SVM in advance and later, and the modeling efficiency is improved under the premise of ensuring prediction accuracy. By the offline training of MATLAB, the support vector is filtered and imported into the developed compensation software, and object linking and embedding for process control (OPC) is used to implement real-time online compensation for thermal errors. Compared with the traditional multiple linear regression modeling method, the proposed model is better in accuracy and efficiency. The results of compensation experiment showed that the axial error of the turntable was reduced from the original maximum of 40 μm to about 10 μm. The machining accuracy of the turntable was improved by 75%, which verifies the effectiveness of the proposed compensation method.



Key wordshydrostatic turntable      support vector machine      thermal deformation      thermal error modeling      compensation software     
Received: 15 June 2018      Published: 13 August 2019
CLC:  TH 115  
Cite this article:

Zhi HUANG,Zhen-jie JIA,Tao DENG,Yong-chao LIU,Li DU. Thermal error compensation of static pressure turntable based on support vector machine. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1594-1601.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.08.018     OR     http://www.zjujournals.com/eng/Y2019/V53/I8/1594


基于支持向量机的静压转台热误差补偿

在一般补偿器的硬件中无法运行MATLAB等第三方工具软件的代码,导致大多模型不能被应用于机床热误差的实际补偿.为了提高误差建模效率,降低对补偿系统硬件的要求,提出静压转台热误差实时补偿方法. 该补偿方法以支持向量机(SVM)为核心算法,分别使用鱼群算法和狼群算法对支持向量机的核心参数进行前期和后期优化,在保证预测精度的前提下提升建模效率. 通过离线训练MATLAB筛选出支持向量导入到开发的补偿软件中,利用用于过程控制的对象连接与嵌入(OPC)方式对热误差实施实时在线补偿. 与传统多元线性回归建模方式对比,可以看出该模型在精度和效率上均较优.补偿实验的结果表明,转台的轴向误差由原来最大为40 μm降低为约10 μm,转台的加工精度提高了75%,验证了所提出补偿方法的有效性.


关键词: 静压转台,  支持向量机,  热变形,  热误差建模,  补偿软件 
Fig.1 Schematic diagram of support vector
Fig.2 Execution flow chart of fish population algorithm
Fig.3 Execution flow chart of wolf group algorithm
Fig.4 Execution flow chart of FS+WPA_SVM algorithm
Fig.5 Comparison chart of algorithm execution efficiency
Fig.6 Comparison of prediction effect of multiple linear regression and FS+WPA_SVM algorithm
Fig.7 Prediction effect of thermal error of turntable by FS+WPA_SVM under different loading weights
Fig.8 compensation system work principle
Fig.9 Schematic diagram of compensation system
Fig.10 Static pressure turntable and displacement sensor arrangement
Fig.11 Temperature sensor arrangement
Fig.12 Hardware and software of compensation system
温度传感器编号 位置
T1 主轴电机端
T2 主轴电机中部
T3 进油管头
T4 进油管尾
T5 回油管头
T6 回油管尾
T7 底座右
T8 底座左
T9 回油泵电机壳
T10 环境温升左
T11 环境温升右
T12 主轴箱左
T13 主轴箱右
T14 进油泵电机壳
Tab.1 Placement locations and numbersof temperature sensors
Fig.13 Comparison between measured and compensation values
[1]   PAHK H, LEE S W Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error[J]. International Journal of Advanced Manufacturing Technology, 2002, 20 (7): 487- 494
doi: 10.1007/s001700200182
[2]   杨建国, 任永强, 朱卫斌, 等 数控机床热误差补偿模型在线修正方法研究[J]. 机械工程报, 2003, 39 (3): 81- 84
YANG Jian-guo, REN Yong-qiang, ZHU Wei-bin, et al On-line correction method of thermal error compensation model for CNC machine tools[J]. Journal of Mechanical Engineering, 2003, 39 (3): 81- 84
[3]   林伟青, 傅建中, 许亚洲, 等 基于最小二乘支持向量机的数控机床热误差预测[J]. 浙江大学学报: 工学版, 2008, 42 (6): 905- 908
LIN Wei-qing, FU Jian-zhong, Xu Ya-zhou, et al Thermal errorprediction of CNC machine tools based on least squares support vector machine[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (6): 905- 908
doi: 10.3785/j.issn.1008-973X.2008.06.001
[4]   YANG Z, SUN M, LI W, et al Modified elman network for thermal deformation compensation modeling in machine tools[J]. International Journal of Advanced Manufacturing Technology, 2011, 54 (5?8): 669- 676
doi: 10.1007/s00170-010-2961-3
[5]   VYROUBAL J Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method[J]. Precision Engineering, 2012, 36 (1): 121- 127
doi: 10.1016/j.precisioneng.2011.07.013
[6]   郭前建, 贺磊, 杨建国 基于投影追踪回归的机床热误差建模技术[J]. 四川大学学报: 工程科学版, 2012, 44 (2): 230- 233
GUO Qian-jian, HE Lei, YANG Jian-guo Thermal error modeling technology for machine tools based on projection tracking regression[J]. Journal of Sichuan University: Engineering Science Edition, 2012, 44 (2): 230- 233
[7]   姜辉, 杨建国, 姚晓栋, 等 数控机床主轴热漂移误差基于贝叶斯推断的最小二乘支持向量机建模[J]. 机械工程学报, 2013, 49 (15): 115- 121
JIANG Hui, YANG Jian-guo, YAO Xiao-dong, et al Modeling of thermal drift error of CNC machine tool based on bayesian inference based least squares support vector machine[J]. Journal of Mechanical Engineering, 2013, 49 (15): 115- 121
[8]   姚晓栋, 黄奕乔, 马晓波, 等 基于时间序列算法的数控机床热误差建模及其实时补偿[J]. 上海交通大学学报, 2016, 50 (5): 673- 679
YAO Xiao-dong, HUANG Yi-qiao, MA Xiao-bo, et al Thermal error modeling and real-time compensation of CNC machine tools based on time series algorithm[J]. Journal of Shanghai Jiaotong University, 2016, 50 (5): 673- 679
[9]   SMITS G F, JORDAAN E M. Improved SVM regression using mixtures of kernels [C]// International Joint Conference on Neural Networks. Honolulu: IEEE, 2002: 2785-2790.
[10]   黄智, 王正杰, 李俊英, 等. 基于FA-LSSVM的数控机床主轴热漂移建模方法: 201610055439.3[P]. 2016-01-28.
[11]   LU H X, Yang J G, XIANG S T A real time error compensation method for CNC machine tools basedon redevelopment of human-machine-interface[J]. Applied Mechanics and Materials, 2014, 556?562: 2519- 2522
doi: 10.4028/www.scientific.net/AMM.556-562
[12]   衡凤琴, 黄智, 陈学尚, 等 数控立车静压转台油膜温度场仿真分析及优化[J]. 机械科学与技术, 2015, 34 (11): 1733- 1737
HENG Feng-qin, HUANG Zhi, CHEN Xue-shang, et al Simulation analysis and optimization of oil film temperature field of static pressure turntable of CNC vertical car[J]. Mechanical Science and Technology, 2015, 34 (11): 1733- 1737
[1] Xin-zhi GAO,Zuo-jun LIU,Yan ZHANG,Ling-ling CHEN. Bicycle riding phase recognition of lower limb amputees based on GWO-SVM[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 648-657.
[2] Xu-ming SU,Cheng-gang FANG,Yu-bin PAN,Wei-wei WU,Ya-ping LI,Lang ZHU. Modeling error of visual measurement system under changing illuminance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1929-1935.
[3] Chao-jun ZHOU,Ming-hui HUANG,Xin-jiang LU. Modeling for distributed parameter systems based on low-dimensional constrained embedding[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2154-2162.
[4] Ying SUN,Yan-xiang HU,Xue-ying ZHANG,Shu-fei DUAN. Prediction of emotional dimensions PAD for emotional speech recognition[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 2041-2048.
[5] DU Ming-yu, BAO Guan-jun, YANG Qing-hua, WANG Zhi-heng, ZHANG Li-bin. Novel method in pattern recognition of hand actions based on improved support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1239-1246.
[6] XIE Jie, HUANG Xiao-diao, FANG Cheng-gang, ZHOU Bao-cang, LU Ning. Thermal characteristics and thermal error modeling analysis for motorized spindle of gear grinding machine tool[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 247-254.
[7] ZHANG Hang, LI Hong-shuang. Structural reliability analysis with LCVT-SVR method[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2035-2042.
[8] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1980-1988.
[9] LI Lin-wei, WU Yi-ping, MIAO Fa-sheng. Prediction of non-equidistant landslide displacement time series based on grey wolf support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1998-2006.
[10] YUAN Hong, WANG Bo, WANG Li, XU Mu-xun. Emotional classification and prediction of body movements based on silhouette[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 160-165.
[11] ZHU Dong-yang, SHEN Jing-yi, HUANG Wei-ping, LIANG Jun. Fault classification based on modified active learning and weighted SVM[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 697-705.
[12] LIAO Miao, ZHAO Yu-qian, ZENG Ye-zhan, HUANG Zhong-chao, ZHANG Bing-kui, ZOU Bei-ji. Automatic segmentation for cell images based on support vector machine and ellipse fitting[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 722-728.
[13] XIE Luo feng, XU Hui ning, HUANG Qin yuan, ZHAO Yue, YIN Guo fu. Application of DTCWPT and NCA-LSSVM to inspect internal defects of magnetic tile[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 184-191.
[14] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1499-1506.
[15] YU Ci jun, SONG Kai, LI Jiang xiong, JIN Zhang jun, FAN Xin tian, ZHANG Ming. Optimization of linear thermal deformation compensation coefficient matrix based on LevenbergMarquardt algorithm[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1056-1064.