1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China 2. Shanghai Aerospace Equipment Manufacturing Factory, Shanghai 201100, China
To ensure the quality of mechanical products and the assembling process, it is necessary to model the variation propagation flow of the assembly process, identify the key assembly characteristics and control the corresponding error assembling nodes and the error source. A method of modeling and error tracing based on the complex network was proposed. The method was used to construct a self-regulated weighted variation propagation network, taking into account the measured data, the information of characteristic surfaces and the assembly technology in the assembly process. The improved weighted semi-local centrality sorting algorithm was used to identify the key characteristics of the constructed variation propagation network. The backtracking algorithm and the importance rank (IR) index were proposed to identify the error source of the key characteristics in the constructed self-regulated weighted variation propagation network, after which the assembly surfaces which need to be monitored could be distinguished. With the multistage assembly process of a gear shaft as a study case, the proposed method was verified. The method can be used to effectively model the variation flow, as well as identify the key assembly surface and the error source in the multistage assembly process.
$B = \displaystyle\sum\limits_{j,l,j \ne l \ne i}^n {{{{N_{jl}}(i)}}/{{{N_{jl}}}}} $
Tab.1Network characteristics of variation propagation network and calculation methods
Fig.3Error tracing process of key nodes
Fig.4Assembly process diagram of bevel gear shaft assembly
Fig.5Variation propagation network topological structure for multistage assembly process of bevel gear shaft assembly
Fig.6Node distribution of variation propagation network
Fig.7Node degree and node strength distribution of variation propagation network
Fig.8Network characteristic analysis and weighted semi-local algorithm analysis results
Fig.9Comparison of calculation results of WSLCA with PageRank algorithm and LeaderRank algorithm
路径
关键节点
回溯第1步节点
第2步节点
第3步节点
路径1
ZCG-3
Z-2
Z-1
Z-0
路径2
ZCG-3
Z-2
Z-1
VT1
路径3
ZCG-3
Z-2
Z-1
TZ1
路径4
ZCG-3
Z-2
Z-1
CD1
路径5
ZCG-3
Z-2
Z-1
TZ2
路径6
ZCG-3
Z-2
Z-1
ZN-11
路径7
ZCG-3
Z-2
Z-1
TZ3
路径8
ZCG-3
Z-2
Z-1
GQ-1
路径9
ZCG-3
Z-2
Z-1
ZN-3
路径10
ZCG-3
Z-2
Z-1
TZ4
路径11
ZCG-3
Z-2
Z-1
TZ5
路径12
ZCG-3
ZCG-2
ZCT-3
ZCT-12
路径13
ZCG-3
ZCG-2
ZCG-1
ZCT-4
路径14
ZCG-3
ZCG-2
ZCG-1
ZN-22
路径15
ZCG-3
ZCG-2
ZCG-1
ZW-22
路径16
ZCG-3
MZ
PJ
?
Tab.3Reverse error source backtracking path of node ZCG-3
节点
ZCT-12
ZCT-3
VT3
TZ2
TZ4
DS-2
ZW-21
ZW-22
VT5
Z-2
TZ-5
ZCG-1
ZCG-2
ZCG-3
CD3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ZCT-11
0.001
0
0
0
0
0
0
0
0
0
0
0
0
0
ZCT-12
0
0.001
0
0
0
0
0
0
0
0
0
0
0
0
ZCT-3
0
0
0
0
0
0
0
0
0
0
0
0
0.571
0
VT3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TZ2
0.050
0
0
0
0
0
0
0
0
0
0
0
0
0
ZCT-4
0
0
0
0
0
0
0
0
0
0
0
0.030
0
0
ZW-11
0.810
0
0
0
0
0
0
0
0
0
0
0
0
0
ZN-21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ZN-22
0
0
0
0
0
0
0
0
0
0
0
0.050
0
0
ZN-3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TZ4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DS-2
0
0
0
0
0
0
0.060
0
0
0
0
0
0
0
ZW-21
0.905
0
0
0
0
0
0
0
0
0
0
0
0
0
ZW-22
0
0
0
0
0
0
0
0
0
0
0
0.070
0
0
VT5
0
0
0
0
0
0
0.020
0.020
0
0
0
0
0
0
Z-2
0
0
0
0
0
0
0
0
0
0
0
0
0
0.762
TZ5
0
0
0
0
0
0
0
0
0
0.060
0
0
0
0
ZCG-1
0
0
0
0
0
0
0
0.040
0
0
0
0
0.001
0
ZCG-2
0
0.952
0
0
0
0
0
0
0
0
0
0
0
0.001
ZCG-3
0
0
0
0
0
0
0
0
0
0.870
0
0
0
0
ZCGK-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Tab.2Error tracing process of self-regulated weighted variation propagation network
路径节点
IR
路径节点
IR
Z-2
0.816
TZ2
0.043
ZCG-2
1.020
ZN-11
0.365
MZ
0.002
TZ3
0.043
Z-1
1.245
GQ-1
0.223
ZCT-3
1.020
ZN-3
0.364
ZCG-1
0.144
TZ4
0.026
PJ
0.012
TZ5
0.051
Z-0
0.033
ZCT-12
1.122
VT1
0.043
ZCT-4
0.029
TZ1
0.017
ZN-22
0.049
CD1
0.183
ZW-22
0.067
Tab.4Error influence of each node in error propagation path of node ZCG-3
关键节点
误差源
Z-1
Z-0
ZCT-11
Z-1,CD2
ZCT-12
ZCT-11,CD2
ZN-3
Z-1
Z-2
Z-1
Tab.5Key nodes and corresponding error sources
[1]
HU S. Impact of 100% measurement data on statistical process control (SPC) in automobile body assembly [D]. Ann Arbor: University of Michigan, 1990.
[2]
HU S J, KOREN Y Stream-of-variation theory for automotive body assembly[J]. CIRP Annals-Manufacturing Technology, 1997, 46 (1): 1- 6
doi: 10.1016/S0007-8506(07)60763-X
[3]
CEGLAREK D, HUANG W, ZHOU S, et al Time-based competition in multistage manufacturing: stream-of-variation analysis (SOVA) methodology[J]. International Journal of Flexible Manufacturing Systems, 2004, 16 (1): 11- 44
doi: 10.1023/B:FLEX.0000039171.25141.a4
[4]
SHI J. Stream of variation modeling and analysis for multistage manufacturing processes [M]. Boca Raton: CRC press, 2006: 34-37.
[5]
BAKKER O, POPOV A, SVETAN M Variation analysis of automated wing box assembly[J]. Procedia CIRP, 2017, 63: 406- 411
doi: 10.1016/j.procir.2017.02.034
[6]
HUANG W, LIN J, KONG Z, et al Stream-of-variation (SOVA) modeling II: a generic 3D variation model for rigid body assembly in multistation assembly processes[J]. Journal of Manufacturing Science and Engineering, 2007, 129 (4): 832- 842
doi: 10.1115/1.2738953
[7]
田兆青, 来新民, 林忠钦 多工位薄板装配偏差流传递的状态空间模型[J]. 机械工程学报, 2007, 43 (2): 202- 209 TIAN Zhao-qing, LAI Xin-min, LIN Zhong-qin State space model of variations stream propagation in multistation assembly processes of sheet metal[J]. Journal of Mechanical Engineering, 2007, 43 (2): 202- 209
doi: 10.3321/j.issn:0577-6686.2007.02.035
[8]
何博侠, 张志胜, 戴敏, 等 机械装配过程的偏差传递建模理论[J]. 机械工程学报, 2008, 44 (12): 62- 68 HE Bo-xia, ZHANG Zhi-sheng, DAI Min, et al Theory of modeling variation propagation of mechanical assembly processes[J]. Journal of Mechanical Engineering, 2008, 44 (12): 62- 68
[9]
JIN J, SHI J State space modeling of sheet metal assembly for dimensional control[J]. Journal of Manufacturing Science and Engineering, 1999, 121 (4): 756- 762
doi: 10.1115/1.2833137
[10]
DING Y, CEGLAREK D, SHI J. Modeling and diagnosis of multistage manufacturing processes: part I: state space model [C]// Proceedings of the 2000 Japan/USA Symposium on Flexible Automation. Ann Arbor: American Society of Mechanical Engineers, 2000: 23-26.
[11]
MANTRIPRAGADA R, WHITNEY D E Modeling and controlling variation propagation in mechanical assemblies using state transition models[J]. IEEE Transactions on Robotics and Automation, 1999, 15 (1): 124- 140
doi: 10.1109/70.744608
[12]
张媛. 再制造发动机装配质量控制方法及关键技术[D]. 合肥: 合肥工业大学, 2017. ZHANG Yuan. Method and key technology of assembly quality control for remanufactured engine [D]. Hefei: Hefei University of Technology, 2017.
[13]
KANTAS N, DOUCET A, SINGH S S, et al An overview of sequential Monte Carlo methods for parameter estimation in general state-space models[J]. IFAC Proceedings Volumes, 2009, 42 (10): 774- 785
doi: 10.3182/20090706-3-FR-2004.00129
[14]
刘伟东, 宁汝新, 刘检华, 等 机械装配偏差源及其偏差传递机理分析[J]. 机械工程学报, 2012, 48 (1): 156- 168 LIU Wei-dong, NING Ru-xin, LIU Jian-hua, et al Mechanism analysis of deviation sourcing and propagation for mechanical assembly[J]. Journal of Mechanical Engineering, 2012, 48 (1): 156- 168
[15]
刘英, 孙云艳, 张根保, 等 元动作装配单元误差传递模型及有效路径求解方法[J]. 重庆大学学报: 自然科学版, 2017, 40 (3): 1- 11 LIU Ying, SUN Yun-yan, ZHANG Gen-bao, et al Error propagation model and calculating method of effective transfer path for meta-action assembly unit[J]. Journal of Chongqing University, 2017, 40 (3): 1- 11
[16]
ZHOU S Study on extraction of machining features about parts of revolution[J]. Acta Automatica Sinica, 1999, 25 (6): 848- 851
[17]
高贵兵, 荣涛, 岳文辉 基于复杂网络的制造系统脆弱性综合评估方法[J]. 计算机集成制造系统, 2018, 24 (9): 160- 168 GAO Gui-bing, RONG Tao, YUE Wen-hui Vulnerability assessment method for the manufacturing system based on complex network[J]. Computer Integrated Manufacturing System, 2018, 24 (9): 160- 168
[18]
BOCCALETTI S, IVANCHENKO M, LATORA V, et al Detecting complex network modularity by dynamical clustering[J]. Physical Review E, 2007, 75 (4): 045102
[19]
LIU Dao-yu, JIANG Ping-yu Fluctuation analysis of process flow based on error propagation network[J]. Journal of Mechanical Engineering, 2010, 46 (2): 14- 21
doi: 10.3901/JME.2010.02.014
[20]
JIANG P, JIA F, WANG Y, et al Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes[J]. Journal of Intelligent Manufacturing, 2014, 25 (3): 521- 538
doi: 10.1007/s10845-012-0703-0
[21]
BOCCALETTI S, LATORA V, MORENO Y, et al Complex networks: structure and dynamics[J]. Complex Systems and Complexity Science, 2006, 424 (4/5): 175- 308
[22]
任晓龙, 吕琳媛 网络重要节点排序方法综述[J]. 科学通报, 2014, 59 (13): 1175- 1197 REN Xiao-long, LV Lin-yuan A survey of ranking methods for important nodes in network[J]. Chinese Science Bulletin, 2014, 59 (13): 1175- 1197
[23]
BRIN S, PAGE L The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30 (1?7): 107- 117