Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1323-1330    DOI: 10.3785/j.issn.1008-973X.2019.07.011
Automatic Technology, Computer Technology     
Groundwater depth prediction model based on IABC-RBF neural network
Guang-cheng SHAO1(),Kun ZHANG1,Zhi-yu WANG1,Xiao-jun WANG2,3,Jia LU1
1. College of Agricultural Engineering, Hohai University, Nanjing 210098, China
2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
3. Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China
Download: HTML     PDF(894KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Gaussian mutation operator was introduced into the basic artificial bee colony algorithm, and the initial nectar location was optimized in order to verify the feasibility and superiority of radial basis function (RBF) neural network model based on improved artificial bee colony algorithm in groundwater depth prediction. A RBF neural network model was designed based on improved artificial bee colony algorithm (IABC-RBF). The groundwater depth was predicted by inputting the annual rainfall, the amount of annual water intake in the first ditch, the amount of annual field irrigating, the annual groundwater exploitation and the groundwater depth in the previous year of Jinghui irrigation district. The error is very small compared with the measured groundwater depth data. The model was compared with the RBF neural network model and the RBF neural network model based on the basic artificial bee colony algorithm (ABC-RBF). Results show that the RBF neural network model based on the improved artificial bee colony algorithm has faster convergence speed, the least error of the prediction result and the highest accuracy.



Key wordsartificial bee colony algorithm      radial basis function neural network      Gaussian mutation      Jinghui irrigation district      groundwater depth      prediction     
Received: 17 May 2018      Published: 25 June 2019
CLC:  P 332  
Cite this article:

Guang-cheng SHAO,Kun ZHANG,Zhi-yu WANG,Xiao-jun WANG,Jia LU. Groundwater depth prediction model based on IABC-RBF neural network. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1323-1330.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.011     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1323


基于IABC-RBF神经网络的地下水埋深预测模型

为了验证基于改进人工蜂群算法的径向基函数(RBF)神经网络模型在地下水埋深预测中的可行性和优越性,在基本人工蜂群算法中引入高斯变异算子,优化初始蜜源位置,设计建立基于改进人工蜂群算法的RBF神经网络模型(IABC-RBF). 通过输入泾惠渠灌区的年降雨量、年渠首引水量、年田间灌溉用水量、年地下水开采量和前一年的地下水埋深共5个相关影响因子的数据,对地下水埋深进行预测,与实测的地下水埋深数据进行比较,误差很小. 与RBF神经网络模型和基于基本人工蜂群算法训练的RBF神经网络模型(ABC-RBF)的预测结果进行比较,结果表明,基于改进人工蜂群算法的RBF神经网络模型收敛速度更快,预测结果误差最小,精度最高.


关键词: 人工蜂群算法,  径向基函数神经网络,  高斯变异,  泾惠渠灌区,  地下水埋深,  预测 
Fig.1 Dynamic relationship between influence factors and groundwater depth
Fig.2 Schematic diagram of radial basis function (RBF) neural network model
Fig.3 Optimization process diagram of improved artificial bee colony algorithm
Fig.4 Schematic diagram of RBF neural network model
序号 参数
Goal Spread MN
1 0.000 862 1.826 070 8
2 0.000 498 2.933 067 10
3 0.000 798 1.688 562 12
4 0.000 789 1.825 936 12
5 0.000 254 1.326 492 11
6 0.000 467 2.526 777 14
7 0.000 207 1.522 293 9
8 0.000 309 1.318 309 8
9 0.000 763 1.383 367 7
10 0.000 168 2.421 241 8
Tab.1 Parameter training results of RBF neural network model
Fig.5 Comparison of predictive value and measured value of IABC-RBF neural network model
年份 实测值/m 模型 预测值/m MRE/%
最优 最差 平均
2006 15.59 RBF ? ? 14.97 3.95
2006 15.59 ABC-RBF 15.76 16.07 15.85 1.66
2006 15.59 IABC-RBF 15.74 15.92 15.83 1.51
2007 15.57 RBF ? ? 14.56 6.46
2007 15.57 ABC-RBF 15.73 16.27 16.02 2.91
2007 15.57 IABC-RBF 15.79 16.18 15.97 2.58
2008 15.78 RBF ? ? 15.15 4.01
2008 15.78 ABC-RBF 15.69 15.32 15.55 1.44
2008 15.78 IABC-RBF 15.71 15.42 15.59 1.20
2009 16.21 RBF ? ? 17.19 6.08
2009 16.21 ABC-RBF 16.06 14.97 15.66 3.38
2009 16.21 IABC-RBF 16.06 15.59 15.75 3.04
2010 16.25 RBF ? ? 14.78 9.05
2010 16.25 ABC-RBF 16.25 16.04 16.20 0.68
2010 16.25 IABC-RBF 16.25 16.11 16.25 0.03
Tab.2 Comparison of prediction results of three prediction models
Fig.6 Average relative error comparison of three models' prediction results
模型 MRE/% σ/m
RBF模型 5.91 0.992 2
ABC-RBF模型 2.01 0.356 5
IABC-RBF模型 1.67 0.305 9
Tab.3 Comparison of average relative error and variance of three model prediction results
Fig.7 Best cost of each iteration
[1]   刘东, 付强 三江平原井灌水稻地区地下水动态变化规律的小波神经网络分析[J]. 灌溉排水学报, 2008, 27 (3): 86- 89
LIU Dong, FU Qiang Dynamic variation regularities analysis of groundwater in well irrigation paddy in sanjiang plain based on waveletneural network[J]. Journal of Irrigation and Drainage, 2008, 27 (3): 86- 89
[2]   CHINH L V, HIRAMATSU K, HARADA M Estimation of water levels in a main drainage canal in a flat low-lying agricultural area using artificial neural network models[J]. Agricultural Water Management, 2009, 96 (9): 1332- 1338
doi: 10.1016/j.agwat.2009.04.005
[3]   张斌, 刘俊民 基于BP神经网络的地下水动态预测[J]. 水土保持研究, 2012, 19 (5): 235- 237
ZHANG Bin, LIU Jun-min Prediction of groundwater dynamics based on the BP neural network[J]. Research of Soil and Water Conservation, 2012, 19 (5): 235- 237
[4]   曹文洁, 肖长来, 梁秀娟, 等 RBF神经网络在地下水动态预测中的应用[J]. 水利水电技术, 2018, 49 (2): 43- 48
CAO Wen-jie, XIAO Chang-lai, LIANG Xiu-juan, et al Application of RBF neural network for groundwater dynatic prediction[J]. Water Resources and Hydropower Engineering, 2018, 49 (2): 43- 48
doi: 10.3969/j.issn.1672-9900.2018.02.014
[5]   曹邦兴 基于蚁群径向基函数网络的地下水预测模型[J]. 计算机工程与应用, 2010, 46 (2): 224- 226
CAO Bang-xing Prediction model of underground water level that combined ant colony algorithms with RBF network[J]. Computer Engineering and Applications, 2010, 46 (2): 224- 226
doi: 10.3778/j.issn.1002-8331.2010.02.066
[6]   李慧, 周维博, 刘博洋, 等 基于粒子群优化算法的RBF神经网络在泾惠渠灌区地下水位埋深预测中的应用[J]. 水电能源科学, 2014, 32 (8): 127- 130
LI Hui, ZHOU Wei-bo, LIU Bo-yang, et al Groundwater depth prediction model in Jinghui irrigation district of RBF neural network based on particle swarm optimization[J]. Water Resources and Power, 2014, 32 (8): 127- 130
[7]   徐强, 束龙仓, 杨桂莲, 等 基于遗传算法优化的小波神经网络在地下水位预测中的应用[J]. 水文, 2010, 30 (1): 27- 30
XU Qiang, SHU Long-cang, YANG Gui-lian, et al Application of optimized wavelet neuralnetwork based on genetic algorithm in groundwater level prediction[J]. Journal of China Hydrology, 2010, 30 (1): 27- 30
[8]   KARABOGA D. An idea based on honey beeswarm for numerical optimization [R]. Kayseri: Erciyes University, 2005.
[9]   KARABOGA D, BASTURK B On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008, (8): 687- 697
[10]   李文莉, 李郁侠, 任平安 基于云变异人工蜂群算法的梯级水库群优化调度[J]. 水力发电学报, 2014, 33 (1): 37- 42
LI Wen-li, LI Yu-xia, REN Ping-an Optimaloperatin of cascade reservoirs based on cloud variation-artificial bee colony algorithm[J]. Journal of Hydroelectric Engineering, 2014, 33 (1): 37- 42
[11]   钱坤, 苏国韶 人工蜂群算法在渠道断面优化设计中的应用[J]. 水利水电科技进展, 2011, 31 (3): 57- 60
QIAN Kun, SU Guo-shao Application of artificial bee colony algorithm to optimizationof channel section[J]. Advances in Science and Technology of Water Resources, 2011, 31 (3): 57- 60
[12]   黄文明, 徐双双, 邓珍荣, 等 改进人工蜂群算法优化RBF神经网络的短时交通流预测[J]. 计算机工程与科学, 2016, 38 (4): 713- 719
HUANG Wen-ming, XU Shuang-shuang, DENG Zhen-rong, et al Short-term traffic flow prediction of optimized RBF neural networks based on the modified ABC algorithm[J]. Computer Engineering and Science, 2016, 38 (4): 713- 719
doi: 10.3969/j.issn.1007-130X.2016.04.015
[13]   苏彩红, 向娜, 陈广义, 等 基于人工蜂群算法与BP神经网络的水质评价模型[J]. 环境工程学报, 2012, 6 (2): 699- 704
SU Cai-hong, XIANG Na, CHEN Guang-yi, et al Water quality evaluation model based on artificial bee colony algorithm and BP neural network[J]. Chinese Journal of Environmental Engineering, 2012, 6 (2): 699- 704
[14]   许贤杰, 周玲, 蒋丹, 等 基于人工蜂群算法计及线路故障的配电网网络重构[J]. 电测与仪表, 2014, 51 (3): 33- 36
XU Xian-jie, ZHOU Ling, JIANG Dan, et al Distribution network reconfiguration based on artificial bee colony algorithm and line fault[J]. Electrical Measurement and Instrumentation, 2014, 51 (3): 33- 36
doi: 10.3969/j.issn.1001-1390.2014.03.008
[15]   刘三阳, 张平, 朱明敏 基于局部搜索的人工蜂群算法[J]. 控制与决策, 2014, 29 (1): 123- 128
LIU San-yang, ZHANG Ping, ZHU Ming-min Artificial bee colony algorithm based on local search[J]. Control and Decision, 2014, 29 (1): 123- 128
[16]   罗钧, 李研 具有混沌搜索策略的蜂群优化算法[J]. 控制与决策, 2010, 25 (12): 1913- 1916
LUO Jun, LI Yan Artificial bee colony algoithm with chaotic-search strategy[J]. Control and Decision, 2010, 25 (12): 1913- 1916
[17]   暴励, 曾建潮 自适应搜索空间的混沌蜂群算法[J]. 计算机应用研究, 2010, 27 (4): 1330- 1334
BAO LI, ZENG Jian-chao Self-adapting search space chaos-artificial bee colony algorithm[J]. Application Research of Computers, 2010, 27 (4): 1330- 1334
[18]   姜鹏, 刘俊民, 黄一帆, 等 泾惠渠地下水对气候变化和人类活动的响应[J]. 人民黄河, 2014, 36 (5): 45- 47
JIANG Peng, LIU Jun-min, HUANG Yi-fan, et al Groundwater response to climate change and human activities in Jinghuiqu[J]. Yellow River, 2014, 36 (5): 45- 47
[19]   向娜. 基于神经网络和人工蜂群算法的水质评价和预测研究[D]. 广州: 华南理工大学, 2012.
XIANG Na. Water quality evaluation and prediction based on neural network and artificial bee colony algorithm [D]. Guangzhou: South China University of Technology, 2012.
[20]   王晓慧, 刘雪英, 白梅花 引入高斯变异和最速下降算子的人口迁移算法[J]. 计算机工程与应用, 2009, 45 (20): 57- 60
WANG Xiao-hui, LIU Xue-ying, BAI Mei-hua Population migration algorithm with Gaussian mutation and the steepest descent operator[J]. Computer Engineering and Applications, 2009, 45 (20): 57- 60
doi: 10.3778/j.issn.1002-8331.2009.20.017
[21]   刘运, 程家兴, 林京 基于高斯变异的人工萤火虫算法在云计算资源调度中的研究[J]. 计算机应用研究, 2015, 32 (3): 834- 837
LIU Yun, CHENG Jia-xing, LIN Jing Study of artificial glowworm algorithm based on Gauss mutation in resource scheduling of cloud computing[J]. Application Research of Computers, 2015, 32 (3): 834- 837
doi: 10.3969/j.issn.1001-3695.2015.03.044
[22]   张京京. 渠井结合灌区地下水位动态对变化环境的响应及调控研究[D]. 杨凌: 西北农林科技大学, 2016.
ZHANG Jing-jing. Groundwater dynamic response and regulation under variational environment in canal-well combined irrigation district [D]. Yangling: Northwest A&F University, 2016.
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[3] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[4] Fa-ming HUANG,Zhong-shan CAO,Chi YAO,Qing-hui JIANG,Jia-wu CHEN. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 472-482.
[5] Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.
[6] You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
[7] Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
[8] Wen-shu LI,Tao-tao ZOU,Hong-yan WANG,Hai HUANG. Traffic accident quantity prediction model based on dual-scale long short-term memory network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1613-1619.
[9] Dong-dong JIANG,Dao-fei LI,Xiao-li YU. Model predictive control energy management based ondriver demand torque prediction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1325-1334.
[10] Chen-lin WANG,Jie YANG,Wen-jun JU,Fu GU,Ji-xi CHEN,Yang-jian JI. Short term load forecasting and peak shaving optimization based on intelligent home appliance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1418-1424.
[11] Xu YAN,Xiao-liang FAN,Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1147-1155.
[12] Chuang LIU,Jun LIANG. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1156-1163.
[13] Zheng-rui TAO,Jia-qiang DANG,Jing-yang XU,Qing-long AN,Ming CHEN,Li WANG,Fei REN. High-precision calibration methods of thickness measurement for insulation coation on curved surface based on eddy current[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1218-1227.
[14] Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1039-1048.
[15] Fei WANG,Guo-fang GONG,Li-wen DUAN,Yong-feng QIN. XGBoost based intelligent determination system design of tunnel boring machine operation parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 633-641.