Computer and Aut omation Technology |
|
|
|
|
Fingerprint-based sound source localization method using two-stage reference points matching |
Shuo-peng WANG1( ),Peng YANG1,2,*( ),Hao SUN1,2,Mai LIU1 |
1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China 2. Smart recovery device and testing technology engineering research center of Ministry of Education, Tianjin 300130, China |
|
|
Abstract A two-stage matching method was proposed for computation reduction of adjacent reference points (RPs) searching in fingerprint-based sound source localization (SSL). In offline sampling phase, the K-means clustering method was adopted to divide the database into a certain number of sub-databases and the outliers were eliminated by the distance-based detection method. In online positioning phase, searching space was compressed by the first stage sub-database matching; then adjacent RPs were obtained through the second stage RPs matching in the adjacent sub-database; the auditory target point (TP) location estimation was accomplished. The experimental results show that the two-stage RPs matching algorithm can effectively improve the positioning efficiency of fingerprint-based sound source localization on the premise of ensuring the positioning accuracy.
|
Received: 07 May 2018
Published: 22 May 2019
|
|
Corresponding Authors:
Peng YANG
E-mail: wangsp87921@hotmail.com;yphebut@163.com
|
两级参考点匹配位置指纹声源定位方法
提出一种两级参考点(RPs)匹配方法来减少位置指纹声源定位(SSL)过程中临近参考点搜索的计算量. 离线采样阶段:通过K均值聚类算法将数据库划分为一定数目的子库,并采用一种距离检测方法对离群点进行剔除. 在线定位阶段:通过第一级临近子库匹配完成对参考点搜索范围的缩减;在临近子库内进行第二级参考点匹配得到临近参考点;完成声源目标(TP)定位. 实验结果表明,采用两级参考点匹配算法可以在保证定位精度的前提下有效提高位置指纹声源定位方法的定位效率.
关键词:
声音位置指纹,
临近参考点,
K均值聚类算法,
两级参考点(RPs)匹配
|
|
[1] |
RASCON C, MEZA I Localization of sound sources in robotics: a review[J]. Robotics and Autonomous Systems, 2017, 96 (10): 184- 210
|
|
|
[2] |
SUN Y X, CHEN J J, YUEN C, et al. Indoor sound source localization with probabilistic neural network[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (8): 6403- 6413
doi: 10.1109/TIE.2017.2786219
|
|
|
[3] |
NIU H Q, GERSTOFT P. Source localization in underwater waveguides using machine learning[J]. Journal of the Acoustical Society of America, 2016, 140 (4): 3232- 3232
|
|
|
[4] |
HUANG Q H, ZHANG L, YONG F. Two-step spherical harmonics ESPRIT-type algorithms and performance analysis[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2018, 26 (9): 1684- 1697
|
|
|
[5] |
KUMAR L, HEGDE R M Near-field acoustic source localization and beamforming in spherical harmonics domain[J]. IEEE Transactions on Signal Processing, 2016, 64 (13): 3351- 3361
doi: 10.1109/TSP.2016.2543201
|
|
|
[6] |
ALAMEDA-PINEDA X, HORAUD R A geometric approach to sound source localization from time-delay estimates[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2014, 22 (6): 1082- 1095
|
|
|
[7] |
方文浩, 邢占元, 文祥计, 等 基于智能手机TDOA估计的被动声源定位方法与系统实现[J]. 仪器仪表学报, 2016, 37 (4): 952- 960 FANG Wen-hao, XING Zhan-yuan, WEN Xiang-ji, et al Passive acoustic source target positioning method based on smart phone platform TDOA estimation and system implementation[J]. Chinese Journal of Scientific Instrument, 2016, 37 (4): 952- 960
doi: 10.3969/j.issn.0254-3087.2016.04.030
|
|
|
[8] |
李晓飞, 刘宏 机器人听觉声源定位研究综述[J]. 智能系统学报, 2012, 7 (1): 9- 20 LI Xiao-fei, LIU Hong A survey of sound source localization for robot audition[J]. CAAI Transactions on Intelligent Systems, 2012, 7 (1): 9- 20
doi: 10.3969/j.issn.1673-4785.201201003
|
|
|
[9] |
万群, 郭贤生, 陈章鑫. 室内定位理论、方法和应用[M]. 北京: 电子工业出版社, 2012: 8-14.
|
|
|
[10] |
CHEN Z, LI Z L, WANG S W, et al. A microphone position calibration method based on combination of acoustic energy decay model and TDOA for distributed microphone array[J]. Applied Acoustics, 2015, 95: 13- 19
doi: 10.1016/j.apacoust.2015.02.013
|
|
|
[11] |
HE S N, JI B, CHAN S H G. Chameleon: survey-free updating of a fingerprint database for indoor localization[J]. IEEE Pervasive Computing, 2016, 15 (4): 66- 75
doi: 10.1109/MPRV.2016.69
|
|
|
[12] |
CHEN L N, LI B H, ZHAO K, et al. An improved algorithm to generate a Wi-Fi fingerprint database for indoor positioning[J]. Sensors, 2013, 13 (8): 11085- 11096
doi: 10.3390/s130811085
|
|
|
[13] |
DAWES B, CHIN K W A comparison of deterministic and probabilistic methods for indoor localization[J]. Journal of Systems & Software, 2011, 84 (3): 442- 451
|
|
|
[14] |
KHALAJMEHRABADI A, GATSIS N, AKOPIAN D Structured group sparsity: a novel indoor WLAN localization, outlier detection, and radio map interpolation scheme[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (7): 6498- 6510
doi: 10.1109/TVT.2016.2631980
|
|
|
[15] |
YOOK D, LEE T, CHO Y Fast sound source localization using two-level search space clustering[J]. IEEE Transactions on Cybernetics, 2016, 46 (1): 20- 26
doi: 10.1109/TCYB.2015.2391252
|
|
|
[16] |
ILANGO M R, MOHAN D V A survey of grid based clustering algorithms[J]. International Journal of Engineering Science and Technology, 2010, 2 (8): 3441- 3446
|
|
|
[17] |
LIU W, FU X, DENG Z L. Coordinate-based clustering method for indoor fingerprinting localization in dense cluttered environments[J]. Sensors, 2016, 16 (12): 1- 26
doi: 10.1109/JSEN.2016.2552300
|
|
|
[18] |
ABUSARA A, HASSAN M S, ISMAIL M H Reduced-complexity fingerprinting in WLAN-based indoor positioning[J]. Telecommunication Systems, 2017, 65 (3): 407- 417
doi: 10.1007/s11235-016-0241-8
|
|
|
[19] |
杨慧琳, 黄智刚, 刘久文, 等 基于核模糊C均值指纹库管理的WIFI室内定位方法[J]. 浙江大学学报: 工学版, 2016, 50 (6): 1126- 1133 YANG Hui-lin, HUANG Zhi-gang, LIU Jiu-wen, et al WIFI fingerprinting localization based on kernel fuzzy C-means Ⅱ clustering[J]. Journal of Zhejiang University: Engineering science, 2016, 50 (6): 1126- 1133
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|