Please wait a minute...
J4  2012, Vol. 46 Issue (7): 1295-1300    DOI: 10.3785/j.issn.1008-973X.2012.07.022
    
Semi-supervised learning based Gaussian processes for
hyperspectral image classification
YAO Fu-tian1,2, QIAN Yun-tao1, LI Ji-ming1
1.College of Computer Science and Technology, Zhejiang University, Hangzhou 310029, China;
2. Department of Computer Science and Technology, China Jiliang University, Hangzhou 310018, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 A new classification method based on spatial semi-supervised Gaussian processes (SSGP) was proposed to address the problem of low hyperspectral imagery classification performance caused by a small number of labeled training samples. As the feature space of a hyperspectral imagery satisfies the assumption of manifold distribution, a lot of unlabeled samples will make the feature space denser so that the local spatial character can be exploited more precisely and the classification accuracy and generality can be improved. In SSGP, the constraint of spatial neighborhood was imposed into the kernel function of Gaussian process, so the spatial correlations of labeled and unlabeled samples can be embedded in the kernel function. SSGP not only raises the classification performance, but also is easy to build and realize. Experimental results show that SSGP method is very good at classification of hyperspectral images in terms of classification accuracy and stability in the case of small size of labeled training samples.



Published: 01 July 2012
CLC:  TP 181  
  TP 391.4  
Cite this article:

YAO Fu-tian, QIAN Yun-tao, LI Ji-ming. Semi-supervised learning based Gaussian processes for
hyperspectral image classification. J4, 2012, 46(7): 1295-1300.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.07.022     OR     http://www.zjujournals.com/eng/Y2012/V46/I7/1295


空间约束半监督高斯过程下的高光谱图像分类

针对高光谱遥感图像分类中带标记训练样本较少、导致分类正确率偏低的问题,提出用于高光谱图像分类的空间约束半监督高斯过程方法.由于高光谱图像的特征空间满足流形分布假设,大量未标记样本可以使数据空间变得更加稠密,从而有助于更加准确地刻画局部空间特性,提高分类的精度和普适性.通过对高斯过程模型中的核函数施加空间近邻约束,建立未标记样本与带标记样本之间的空间联系.该半监督高斯过程分类器不仅可以提升高光谱遥感图像的分类性能,而且构造简单,实现方便.实验结果表明,在仅有少量带标记的训练样本情况下,半监督高斯过程分类方法对高光谱图像有较高的分类精度和稳定性.

[1] VATSAVAI R, SHEKHAR S, BURK T. A semisupervised learning method for remote sensing data mining [C]∥17th IEEE International Conference on Tools with Artificial Intelligence. Hongkong: IEEE, 2005: 5-211.
[2] GOMEZCHOVA L, CALPE J, CAMPSVALLS G, et al. Semisupervised classification method for hyperspectral remote sensing images [C]∥International Geoscience and Remote Sensing Symposium. Touluse, France: [s. n.],2003: 1776-1778.
[3] BLUM A, MITCHELL T. Combining labeled and unlabeled data with cotraining [C]∥Proceedings of the 11th Annual Conference on Computational Learning Theory. Madison, USA: [s. n.], 1998: 92-100.
[4] 赵鹏飞, 钱沄涛, 郑文斌, 等. 基于图像与文本特征的在线生物文献MRI图像库构建[J]. 中国生物医学工程学报, 2010, 29(5):697-703.
ZHAO Pengfei, QIAN Yuntao, ZHENG Wenbin, et al. MRI database construction using image and text features extracted from online biological literature [J]. Chinese Journal of Biomedical Engineering, 2010, 29(5): 697-703.
[5] SHAHSHAHANI B, LANDGREBE D. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1087-1095.
[6] SINDHWANI V, CHU W, KEERTHI S. Semisupervised Gaussian process classifiers [C] ∥ Proceedings of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India: [s. n.], 2007: 1059-1064.
[7] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
[8] 姚伏天, 钱沄涛. 用于高光谱遥感图像分类的空间约束高斯过程方法[J]. 南京大学学报:自然科学版, 2009, 45(5): 665-670.
YAO Futian, QIAN Yuntao. A spatial Gaussian process method for hyperspectral remote sensing imagery classification [J]. Journal of Nanjing University: Natural Sciences, 2009, 45(5): 665-670.
[9] CHAPELLE O, SCHOLKOPF B, ZIEN A. Semisupervised learning [M]. Cambridge: MIT, 2006: 229-231.
[10] RASMUSSEN C, WILLIAMS I. Gaussian processes for machine learning [M]. Cambridge: MIT, 2006: 20-26.
[11] SINDHWANI V, NIYOGI P, BELKIN M. Beyond the point cloud: from transductive to semisupervised learning [C]∥Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: [s. n.], 2005: 824-831.
[12] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples [J]. Journal of Machine Learning Research, 2006, 7(7): 2339-2434.

[1] LIN Yi-ning, WEI Wei, DAI Yuan-ming. Semi-supervised Hough Forest tracking method[J]. J4, 2013, 47(6): 977-983.
[2] LI Kan, HUANG Wen-xiong, HUANG Zhong-hua. Multi-sensor detected object classification method based on
support vector machine
[J]. J4, 2013, 47(1): 15-22.
[3] WANG Hong-bo, ZHAO Guang-zhou, QI Dong-lian, LU Da. Fast incremental learning method for one-class support vector machine[J]. J4, 2012, 46(7): 1327-1332.
[4] AI Jie-qing, GAO Ji, PENG Yan-bin, ZHENG Zhi-jun. Negotiation decision model based on transductive
support vector machine
[J]. J4, 2012, 46(6): 967-973.
[5] PAN Jun, KONG Fan-sheng, WANG Rui-qin. Locality sensitive discriminant transductive learning[J]. J4, 2012, 46(6): 987-994.
[6] JIN Zhuo-jun, QIAN Hui, ZHU Miao-liang. Trajectory evaluation method based on intention analysis[J]. J4, 2011, 45(10): 1732-1737.
[7] GU Hong, ZHAO Guang-zhou. Image retrieval and recognition based on generalized
local distance functions
[J]. J4, 2011, 45(4): 596-601.
[8] LUO Jian-hong, CHEN De-zhao. Application of adaptive ensemble algorithm based on
correctness and diversity
[J]. J4, 2011, 45(3): 557-562.
[9] SHANG Xiu-Qin, LEI Jian-Gang, SUN You-Xian. Genetic programming based twoterm prediction model of iron ore burning through point[J]. J4, 2010, 44(7): 1266-1269.
[10] XU Lei, DIAO Guang-Zhou, GU Hong. Preprocess method of pairwise coupling based on multi-spheres[J]. J4, 2010, 44(2): 237-242.
[11] OU Li-Yong, DU Shu-Xin. Multi-agent based coordination of public detection resources[J]. J4, 2010, 44(1): 81-86+123.