Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (5): 873-885    DOI: 10.3785/j.issn.1008-973X.2018.05.007
Civil and Traffic Engineering     
Effects of street canyon geometry on summer outdoor air temperature and thermal comfort
DENG Ji-Yu1, ZHENG Xin1, WONG Nyuk Hien2
1. School of Architecture, Southeast University, Nanjing 210096, China;
2. Department of Building, National University of Singapore, 117566, Singapore
Download:   PDF(4970KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The parametric approach was applied to develop 16 CBD urban scenarios with different geometrical parameters in order to analyze the interrelationship between street canyon geometry and outdoor air temperature and thermal comfort based on the typical summer weather condition of Nanjing. The STEVE tool was employed to simulate and generate the 24-hour local outdoor air temperatures in different locations of the 16 urban scenarios. The 24-hour outdoor air temperatures were used to calculate the 24-hour thermal comfort index (PET) in the corresponding locations by using RayMan model. The influencing rules of street canyon geometry on local outdoor air temperature and thermal comfort were obtained based on comparative analysis on the distributional characteristics of outdoor air temperature and PET in different locations of each urban scenario. Results indicate that both the canyon aspect ratio and sky view factor exert crucial impacts on local outdoor air temperature and thermal comfort. The effects on air temperature between daytime and nighttime are contrary while the effects on thermal comfort are in accordance through all day long.



Received: 20 December 2016      Published: 07 November 2018
CLC:  TU119.4  
Cite this article:

DENG Ji-Yu, ZHENG Xin, WONG Nyuk Hien. Effects of street canyon geometry on summer outdoor air temperature and thermal comfort. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 873-885.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.05.007     OR     http://www.zjujournals.com/eng/Y2018/V52/I5/873


街道层峡形态对夏季室外气温及热舒适的影响

为了研究南京典型夏季气候条件下街区层峡形态与室外气温及热舒适度的关系,采用参数化方法衍生设计出16个具有不同层峡形态的中心商业区(CBD)街区模型,利用建筑环境气温预测工具(STEVE Tool)进行数值模拟,计算得到各街区不同位置的24 h实际区域室外气温(θa),并基于θa采用RayMan模型计算各街区中不同位置的24 h热舒适度(PET).通过比较分析各街区不同位置区域室外气温与热舒适度的分布特征,得到街区层峡几何形态对区域室外气温及热舒适度的影响规律.结果表明:街区层峡高宽比与天空视角系数(ΨSVF)对区域室外气温及室外热舒适度均起主要的影响作用,但对气温的影响在白天与夜间呈相反趋势,对室外热舒适度的影响趋势全天较一致.

[1] TODHUNTER P E. Microclimatic variation attributable to urban canyon asymmetry and orientation[J]. Physics and Geography, 1990, 11(2):131-141.
[2] OKE T R. Canyon geometry and the nocturnal urban heat island:comparison of scale model and field observations[J]. Journal of Climatology, 1981, 1(3):237-254.
[3] EMMANUEL R, JOHANSSON E. Influence of urban morphology and sea breeze on hot humid microclimate:the case of Colombo, Sri Lanka[J]. Climate Research, 2006, 30(3):189-200.
[4] ARNFIELD A J. Street design and urban canyon solar access[J]. Energy and Buildings, 1990, 14(2):117-131.
[5] LIN T P, MATZARAKIS A, HWANG R L. Shading effect on long-term outdoor thermal comfort[J]. Building and Environment, 2010, 45(1):213-221.
[6] BOURBIA F, AWBI H B. Building cluster and shading in urban canyon for hot dry climate part 1:air and surface temperature measurements[J]. Renewable Energy, 2004, 29(2):249-262.
[7] ALI-TOUDERT F, MAYER H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate[J]. Building and Environment, 2006, 41(2):94-108.
[8] ALI-TOUDERT F, MAYER H. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons[J]. Solar Energy, 2007, 81(6):742-54.
[9] MATZARAKIS A, RUTZ F, MAYER H. Modelling radiation fluxes in simple and complex environments-application of the RayMan model[J]. International Journal of Biometeorology, 2007, 51(4):323-334.
[10] CHEN L, NG E, AN X, et al. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong:a GIS-based simulation approach[J]. International Journal of Climatology, 2012, 32(1):121-136.
[11] KRVGER E L, MINELLA F O, RASIA F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazi l[J]. Building and Environment, 2011, 46(3):621-634.
[12] YAMASHITA S, SEKINE K, SHODA M, et al. On relationships between heat island and sky view factor in the cities of Tama River basin, Japan[J]. Atmospheric Environment (1967), 1986, 20(4):681-686.
[13] SVENSSON M K. Sky view factor analysis-implications for urban air temperature differences[J]. Meteorological applications, 2004, 11(3):201-211.
[14] OKE T R. Street design and urban canopy layer climate[J]. Energy and Buildings, 1988, 11(1):103-113.
[15] PEARLMUTTER D, BITAN A, BERLINER P. Microclimatic analysis of "compact" urban canyons in an arid zone[J]. Atmospheric Environment, 1999, 33(24):4143-4150.
[16] 王振, 李保峰. 微气候视角下的城市街区环境定量分析技术[C]//第六届国际绿色建筑与建筑节能大会论文集. 北京:中国城市科学研究会, 2010:118-122. WANG Zhen, LIBao-feng. Quantitative analysis methods of environment on urban blocks based on micro-climate[C]//Paper Collection for the 6th International Conference on Green and Energy-Efficient Building. Beijing:Chinese Society for Urban Studies, 2010:118-122.
[17] ZHANG Y, QIN B, CHEN W. Analysis of solar radiation variations over Nanjing region in recent 40 years[J]. Journal of Geographical Sciences, 2003, 13(1):97-104.
[18] MARTIN L, MARCH L. Urban space and structures[M]. Cambridge:Cambridge University Press, 1972:55-96.
[19] JUSUF S K, WONG N H. Development of empirical models for an estate level air temperature prediction in Singapore[C]//Proceedings of the Second International Conference on Countermeasures to Urban Heat Island. Berkeley:[s. n.], 2009:21-23.
[20] JUSUF S K, WONG N H, TAN C L, et al. STEVE Tool:bridging the gap between urban climatology research and urban planning process[C]//International Conference on Sustainable Design and Construction 2011:Integrating Sustainability Practices in the Construction Industry. Kansas:ASCE, 2012:25-33.
[21] 王频, 孟庆林. STEVE气温预测模型的普适性检验——以广州地区为例[J]. 土木建筑与环境工程, 2013, 35(4):151-160. WANG Pin, MENG Qing-lin. Validation tests for air temperature prediction model steve:an example of Guangzhou[J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(4):151-160.
[22] CHONG Z M A, WONG N H, IGNATIUS M, et al. Predicting the envelope performance of commercial office buildings in Singapore[J]. Energy and Buildings, 2013, 66:66-76.
[23] NIKOLOPOULOU M, STEEMERS Κ. Thermal comfort and psychological adaptation as a guide for designing urban spaces[J]. Energy and Buildings, 2003, 35(1):95-101.
[24] 丁沃沃, 胡友培, 窦平平. 城市形态与城市微气候的关联性研究[J]. 建筑学报, 2012, (7):16-21. DINGWo-wo, HU You-pei, DOU Ping-ping. Study of the interrelationship between urban pattern and urban microclimate[J]. Architectural Journal, 2012, (7):16-21.
[25] MATZARAKIS A, MAYER H, IZIOMON M G. Applications of a universal thermal index:physiological equivalent temperature[J]. International Journal of Biometeorology, 1999, 43(2):76-84.
[26] HOUGHTON F C, YAGLOU C P. Determining equal comfort lines[J]. Journal of the American Society of Heating and Ventilating Engineers, 1923, 29:165-176.
[27] YAGLOU C P, MINAED D. Control of heat casualties at military training centers[J]. Archives of Industrial Health, 1957, 16(4):302-316.
[28] SIPLE P, PASSEL C F. Measurements of dry atmospheric cooling in subfreezing temperatures[J]. Proceedings of the American Philosophical Society, 1945, 89(1):177-199.
[29] FANGER P O. Assessment of man's thermal comfort in practice[J]. Occupational and Environmental Medicine, 1973, 30(4):313-324.
[30] GAGGE A P, STOLWIJK J A J, NISHI Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Transactions, 1971, 77:247-272.
[31] GONZALEZ R R, NISHI Y, GAGGE A P. Experimental evaluation of standard effective temperature:a new biometeorological index of man's thermal discomfort[J]. International Journal of Biometeorology, 1974, 18(1):1-15.
[32] HÖPPE P. The physiological equivalent temperature-a universal index for the biometeorological assessment of the thermal environment[J]. International Journal of Biometeorology, 1999, 43(2):71-75.
[33] NAGANO K, HORIKOSHI T. New index indicating the universal and separate effects on human comfort under outdoor and non-uniform thermal conditions[J]. Energy and Buildings, 2011, 43(7):1694-1701.
[34] JENDRITZKY G, DE DEAR R, HAVENITH G. UTCI-why another thermal index?[J]. International Journal of Biometeorology, 2012, 56(3):421-428.
[35] KENNY N A, WARLAND J S, BROWN R D, et al. Part A:Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity[J]. International Journal of Biometeorology, 2009, 53(5):415-428.
[36] KURAZUMI Y, TSUCHIKAWA T, KONDO E, et al. Conduction-corrected modified effective temperature as the indices of combined and separate effect of environmental factors on sensational temperature[J]. Energy and Buildings, 2010, 42(4):441-448.

No related articles found!