Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Computer Technology, Information Engineering     
Multi-objective optimization of ribs design parameters for plastic oil cooler cover
ZHANG Jun hong, GUO Qian, WANG Jian, XU Zhe xuan, CHEN Kong wu
1. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China;
2. Mechanical Engineering Department of Tianjin University Ren’ Ai College, Tianjin 301636, China
Download:   PDF(1709KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 In the design of ribs for plastic oil cooler cover, the liquid-solid coupling model, response surface method (RSM) and fast nondominated sorting genetic algorithm (NSGA-II) were used for multi-objective optimization of ribs design parameters in order to reduce the radiated noise and increase the structural strength of plastic oil cooler cover. The liquid-solid coupled method was used to predict the radiated noise and the main coupling modal frequencies having great contributions to the radiated noise of the plastic oil cooler cover were identified. The strain energy of the oil cooler cover was computed under the effect of fluid pressure. An approximation model between design parameters of ribs and coupling modal frequencies and the strain energy was established based on the optimal Latin hypercube and response surface method (RSM). The optimization objectives were the coupling modal frequencies and the strain energy. The NSGA-II was applied for multi-objective optimization of ribs design parameters for plastic oil cooler cover. The overall noise was reduced 1.6 dB and the compliance was reduced 1 561 N·mm compared with the initial plastic oil cooler cover.



Published: 23 July 2016
CLC:  TK 422  
Cite this article:

ZHANG Jun hong, GUO Qian, WANG Jian, XU Zhe xuan, CHEN Kong wu. Multi-objective optimization of ribs design parameters for plastic oil cooler cover. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1360-1366.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.07.019     OR     http://www.zjujournals.com/eng/Y2016/V50/I7/1360


塑料机油冷却器盖加强筋参数的多目标优化

在塑料机油冷却器加强筋参数优化设计中,为了有效地降低振动噪声及提高罩盖强度,结合流固耦合、响应曲面法(RSM)、带精英策略的非支配排序遗传算法(NSGA-II)对塑料机油冷却器盖加强筋参数进行多目标优化.采用流固耦合的方法对原塑料机油冷却器盖的振动噪声水平进行预测,根据预测结果识别出对噪声贡献度较大的耦合模态频率|计算流体压力作用下罩盖的应变能|在罩盖底面布置加强筋,基于最优拉丁超立方设计和响应曲面法(RSM)建立加强筋设计参数与识别出的耦合模态频率、应变能和加强筋体积之间的近似模型|以耦合模态频率、应变能及加强筋体积作为优化目标,应用NSGA-II对加强筋设计参数进行优化.结果表明,相对于原塑料机油冷却器盖,总声功率级降低了1.6 dB,应变能降低了1 561 N·mm.

[1] KLAUS G. Vehicle interior noisecombination of sound, vibration and interactivity [J]. Sound and Vibration, 2009, 43(12): 8-13.
[2] 弯艳玲, 李守魁, 李元宝. 某型轿车加速行驶车外噪声控制方法[J]. 振动、测试与诊断, 2012, 32(5): 850-853.
WAN Yanling, LI Shoukui, LI Yuanbao. Control method of reducing passby noise emitted by accelerating certain of motor vehicles [J]. Journal of Vibration, Measurement and Diagnosis, 2012, 32(5): 850-853.
[3] 贾继德, 王元龙, 李金学. 客车车外噪声源识别及整车降噪研究[J]. 振动与冲击, 2008, 27(3): 161-164.
JIA Jide, WANG Yuanlong, LI Jinxue. Noise source identification and noise control of the bus [J]. Journal of Vibration and Shock, 2008, 27(3): 161-164.
[4] 朱孟华. 内燃机振动与噪声控制[M]. 北京: 国防工业出版社, 1995: 34-42.
[5] 钱人一. 车用发动机噪声控制[M]. 上海: 同济大学出版社, 1997: 52-57.
[6] 贺岩松, 黄勇, 徐中明, 等. 发动机边盖透射与辐射噪声识别研究[J]. 振动与冲击, 2013, 32(22): 174-177.
HE Yansong, HUANG Yong, XU Zhongming, et al. Identification of transmission and radiation noise of an engine side cover [J]. Journal of Vibration and Shock, 2013, 32(22): 174-177.
[7] DELPRETE C, PREGNO F, ROSSO C. A proposal of an oil pan optimization methodology [C]∥Proceedings of the SAE 2010 Word Congress and Exhibition. Detroit: SAE,2010.
[8] ZOUANI A, SMITH T, VALENCIA F, et al. NVH development of lightweight polymer engines oil pans for gasoline [C]//Proceedings of the SAE 2009 Noise and Vibration Conference and Exhibition. Detroit: SAE, 2009.
[9] 舒歌群, 刘俊栋, 李民, 等. 基于HyperWorks的柴油机油底壳有限元建模和结构优化[J]. 小型内燃机与摩托车, 2008, 37(1): 25-27.
SHU Gequn, LIU Jundong, LI Min, et al. Building FEM model and structural optimization for oil pan on hyperworks [J]. Small Internal Combustion Engine and Motorcycle, 2008, 37(1): 25-27.
[10] 郑康, 郝志勇, 王连生, 等. 塑料缸盖罩透射及结构辐射噪声[J]. 浙江大学学报:工学版, 2014, 48(2): 342-347.
ZHENG Kang, HAO Zhiyong, WANG Liansheng, et al. Research on transmission and structural radiation noise of plastic engine cover [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(2): 342-347.
[11] 贾维新, 郝志勇, 杨金才. 基于形貌优化的低噪声油底壳设计研究[J]. 浙江大学学报:工学版, 2007, 41(5): 770-773.
JIA Weixin, HAO Zhiyong, YANG Jincai. Low noise design of oil pan based on topography optimization [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(5): 770-773.
[12] 张亮, 袁兆成, 黄震. 流固耦合有限元法用于油底壳模态计算[J]. 振动与冲击, 2003, 22(4): 100-102.
ZHANG Liang, YUAN Zhaocheng, HUANG Zhen. Fluidstructure coupled applied in oil pans mode calculation [J]. Journal of Vibration and Shock, 2003, 22(4): 100-102.
[13] 冯威, 袁兆成, 刘伟哲. 机油参数对液固耦合油底壳辐射声场的影响[J]. 振动与冲击, 2006, 25(1): 150-152.
FENG Wei, YUAN Zhaocheng, LIU Weizhe. Influence of oil parameters on the radiant acoustic field of liquidsolid coupled oil pan [J]. Journal of Vibration and Shock, 2006, 25(1): 150-152.
[14] PARK J S. Optimal latinhypercube designs for computer experiments [J]. Journal of Statistical Planning and Inference, 1994, 39(1): 95-111.
[15] 雷德明,严新平. 多目标智能优化算法及其应用[M]. 北京: 科学出版社,2009: 31-33.

[1] LIU Zhen-tao, CHEN Si-nan, HUANG Rui, YIN Xu, YU Xiao-li, WEI Zhi-ming, ZHANG Quan-zhong. Thermal load analysis and optimization of high power density diesel engine cylinder head[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1544-1552.
[2] ZHANG Huan-yu, HAO Zhi-yong, ZHENG Xu. Study of NVH performance improvement for a four-cylinder diesel engine body [J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(5): 895-900.
[3] ZHANG Huan-yu, HAO Zhi-yong. Influence of flywheel cover structural stiffness on engine
body NVH performance
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(2): 261-266.
[4] ZHANG Peng-wei, LIU Zhen-tao, LI Jian-feng, LI Jing-lu, YU Xiao-li. Fatigue crack identification method based on relative
change of strain in engine block
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(5): 948-953.