Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Energy Engineering     
Clamping force prediction for robotic drilling of stacked structure
CHEN Wei1, ZHU Wei dong1, ZHANG Ming1, ZHAO Jian dong2, MEI Biao1
1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; 2. Zhejiang Zhongneng Engineering Test Company Limited, Hangzhou 311106, China
Download:   PDF(2340KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
A clamping force prediction method considering the effect of initial gap was proposed based on the principle of gap eliminating in order to accurately estimate the
clamping force used in robotic drilling. Firstly, the influences of the stiffness of a fuselage panel on the demanded clamping force at the drilled positions in automatic robotic drilling were analyzed. And the region of the fuselage panel were divided according to the panel’s structure characteristics. In robotic drilling, different interlayer gaps demand different clamping forces to close them. Therefore, the formation of the interlayer gap in robotic drilling and the effects of the interlayer gap on the demanded clamping force were further analyzed. Based on the constructed finite element model related to aircraft panel and the method of influence coefficient, the stiffness matrices of skin and stringer were  obtained. Initial gaps between skin and stringer were produced by Monte Carlo simulation. The clamping forces of all drilling positions, which were applied to close the interlayer gaps, were calculated based on the elastic mechanics. The drilling experiments were conducted on the developed robotic drilling platform by using the predicted clamping forces. The experimental results show that burr height is less than 0.1 mm, which can meet the quality requirements of drilled fastener holes in aircraft assembly. Therefore, clamping force can be accurately estimated based on the proposed clamping force prediction method for robotic drilling. Hence burr formation is effectively suppressed in automatic drilling process for aircraft panel, and the drilling quality of the drilled fastener holes is ensured. The proposed method provides efficient aircraft automatic assembly with technical support.


Published: 31 December 2015
CLC:  V 262.4  
Cite this article:

CHEN Wei, ZHU Wei dong, ZHANG Ming, ZHAO Jian dong, MEI Biao. Clamping force prediction for robotic drilling of stacked structure. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2282-2289.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.12.007     OR     http://www.zjujournals.com/eng/Y2015/V49/I12/2282


叠层结构机器人制孔压紧力预测

为了能合理地选择机器人制孔过程中的压紧力,基于叠层结构间隙消除的基本原理,提出机器人制孔过程中考虑初始间隙的压紧力预测方法.通过分析机器人自动化制孔过程中机身壁板刚度对各制孔位置所需压紧力大小的影响,并根据机身壁板的结构特点,对机身壁板的区域进行划分.在制孔过程中,层间间隙的不同也会导致所需压紧力的不同,因而分析叠层制孔过程中间隙的形成原因以及间隙对压紧力的影响.基于构建的壁板结构有限元仿真模型,结合影响系数法获取蒙皮和长桁的刚度矩阵,利用蒙特卡洛模拟生成蒙皮和长桁的初始间隙,基于弹性力学原理计算各制孔位置间隙消除所需的制孔压紧力.采用预测的压紧力在机器人制孔平台上进行制孔实验.实验结果表明:制孔后层间毛刺高度均小于0.1 mm,满足飞机装配中紧固孔的制孔质量要求.所提出的机器人制孔压紧力预测方法能够实现压紧力的准确预测,并有效抑制飞机壁板自动化制孔过程中毛刺的产生,确保紧固孔的制孔质量,为高效率的飞机自动化装配提供了技术支持.
[1] 王珉,薛少丁,陈文亮,等.面向飞机自动化装配的单向压紧制孔毛刺控制技术[J].航空制造技术,2011(9):26-29.
WANG Min, XUE Shao ding, CHEN Wen liang, et al. One side pressed burrless drilling technology for aircraft automatic assembly [J]. Aeronautical Manufacturing Technology, 2011
(9): 26-29.
[2] 秦瑞祥,邹冀华.工业机器人在飞机数字化装配中的应用[J].航空制造技术, 2010, 23: 104-108.
QIN Rui xiang, ZOU Ji hua. Application of industrial robot in aircraft digital assembly [J]. Aeronautical Manufacturing Technology, 2010, 23: 104-108.
[3] 员峻峰,姚艳彬,宗光华.基于PLC的机器人制孔执行器控制系统设计[J].机械设计与制造, 2010, 7:144-146.
YUAN Jun feng, YAO Yan bin, ZONG Guang hua. The design of robot drilling end effector control system based on PLC [J]. Machinery Design and Manufacture, 2010, 7: 144-146.
[4] 戴家隆,沈建新,田威,等.自动化钻孔系统柔性控制[J].南京航空航天大学学报,2012, 44(增): 56-58.
DAI Jia long, SHEN Jia xin, TIAN Wei, et al. Flexible control of automatic drilling system [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44
(Suppl.): 56-58.
[5] 费少华,方强,孟祥磊,等.基于压脚位移补偿的机器人制孔锪窝深度控制[J].浙江大学学报:工学版, 2012, 46(7): 1157-1161.
FEI Shao hua, FANG Qiang, MENG Xiang lei, et al. Countersink depth control of robot drilling based on pressure foot displacement compensation [J]. Journal of Zhejiang
University: Engineering Science, 2012, 46(7): 1157-1161.
[6] 杜宝瑞,冯子明,姚艳彬,等.用于飞机部件自动制孔的机器人制孔系统[J].航空制造技术,2010, 2: 47-50.
DU Bao rui, FENG Zi ming, YAO Yan bing, et al. Robot drilling system for automatic drilling of aircraft component [J]. Aeronautical Manufacturing Technology, 2010, 2: 47-50.
[7] AURICH J C, DORNFELD D, ARRAZOLA P J, et al. Burrs analysis, control and removal [J]. CIRP Annals manufacturing technology, 2009, 58(2): 519-542.
[8] ZEDAN Y,NIKNAM S A,DJEBARA A, et al. Burr size minimization when drilling 6061 T6 aluminum alloy [C] ∥ Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Houston: ASME, 2012: 1-7.
[9] PILN L, DE C L, PISKA M. Hole quality and burr reduction in drilling aluminium sheets [J]. Cirp Journal of Manufacturing Science and Technology, 2012, 5:102-107.
[10] TOMAS O, MATHIAS H, HENRIK K, et al. Cost efficient drilling using industrial robots with high bandwidth force feedback [J]. Robotics and Computer Integrated
Manufacturing, 2010, 26: 24-38.
[11] LAUDERBAUGH L K. Analysis of the effects of process parameters on exit burrs in approach drilling using a combined simulation and experimental [J]. Journal of Materials
Processing Technology, 2009,209(4): 1909-1919.
[12] RAMULU M, BRANSON T, KIM D. A study on the drilling of composite and titanium stacks [J]. Composite Structures, 2001, 54(1): 67-77.
[13] RIVERO A, ARAMENDI G, HERRANZ S, et al. An experimental investigation of the effect of coatings and cutting parameters on the dry drilling performance of aluminum alloys
[J]. International Journal of Advanced Manufacturing Technology, 2006, 28(1): 1-11.
[14] NEWTON T R, MOREHOUSE J, MELKOTE S N, et al. An experimental study of interfacial burr formation in drilling of stacked aluminum sheets [J]. Transactions of the North
American Manufacturing Research Institution of SME, 2008, 36: 437-444.
[15] CHOI J, MIN S, DORNFELD D, et al. Modeling of inter layer gap formation in drilling of a multi layered material [C] ∥ Proceedings of the 6th CIRP International
Workshop on Modeling of Machining. Hamilton: CIRP, 2003: 19-20.
[16] LIANG J. The formation and effect of interlayer gap in dry drilling of stacked metal materials [J]. International Journal of Advanced Manufacturing Technology, 2013,
69(5): 1263-1272.
[17] 王珉,薛少丁,蒋红宇,等.飞机大部件对接自动化制孔单向压紧力分析[J]. 南京航空航天大学学报,2012, 44(4): 553-558.
WANG Min, XUE Shao ding, JIANG Hong yu, et al. One side pressure force analysis of automatic drilling of aircraft fuselage section joint assembly [J]. Journal of Nanjing
University of Aeronautics and Astronautics, 2012, 44(4): 553-558.
[18] BI S S, LIANG J. Robotic drilling system for titanium structures [J]. International Journal of Advanced Manufacturing Technology, 2011, 54: 767-774.
[19] 张杨,高明辉,周万勇,等. 自动钻铆系统中工业机器人协同控制技术研究[J].航空制造技术,2013, 20:87-94.
ZHANG Yang, GAO Ming hui, ZHOU Wan Yong, et al. Research on industrial robot cooperative control technology for automatic drilling and riveting system[J]. Aeronautical
Manufacturing Technology, 2013, 20: 87-94.
[20] 曲巍崴,侯鹏辉,杨根军,等. 机器人加工系统刚度性能优化研究[J].航空学报,2013, 34(12): 2823-2832.
QU Wei wei, HOU Peng hui, YANG Gen jun, et al. Research on the stiffness performance for robot machining systems [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):
2823-2832.
[21] 董辉跃,曹国顺,曲巍崴,等.工业机器人自动钻孔及锪窝一体化加工[J].浙江大学学报:工学版, 2013, 47(2): 201-208.
DONG Hui yue, CAO Guo shun, QU Wei wei, et al. Processing research of industry robots drilling and countersinking automaticly [J]. Journal of ZhejiangUniversity: Engineering
Science, 2013, 47(2):201208.
[22] 王志瑾,姚卫星.飞机结构设计[M].北京:国防工业出版社,2007: 155156.
[23] LIU S C, HU S J. Variation simulation for deformable sheet metal assemblies using finite element methods[J]. Journal of Manufacturing Science and Engineering, 1997,
119(3): 368-374.
[24] ZHANG X K, WANG Z Q, KANG Y G, et al. Research on assembly variation modeling of aircraft weakly rigid structures [J]. Applied Mechanics and Materials, 2014, 621:
241-246.
[25] LIU G, HUAN H L, KE Y L. Study on analysis and prediction of riveting assembly variation of aircraft fuselage panel [J]. The International Journal of Advanced
Manufacturing Technology, 2014, 75(5): 991-1003.
[26] 程宝蕖.飞机制造协调准确度与容差分配[M].北京:航空工业出版社,1987: 165-166.
[1] YU Ci jun, SONG Kai, LI Jiang xiong, JIN Zhang jun, FAN Xin tian, ZHANG Ming. Optimization of linear thermal deformation compensation coefficient matrix based on LevenbergMarquardt algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1056-1064.
[2] GUO Zhi-min, JIANG Jun-xia, KE Ying-lin. Static stiffness of three-axis actuators based posture alignment
system for large aircraft components
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(11): 2077-2082.
[3] JIANG Jun-Xia, FAN Zi-Chun, GUO Zhi-Min, KE Yang-Lin. Design and optimization of flexible assembly platform used for
three sections joint
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(9): 1798-1804.
[4] GUO Zhi-Min, JIANG Jun-Xia, KE Yang-Lin. Posture alignment internal force in three-axis actuators based
assembly system for large aircraft parts
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(8): 1508-1513.
[5] ZHANG Bin, TAO Bao-Guo, KE Yang-Lin. Saddle point programming based level-posture evaluation method for aircraft wings[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(10): 1761-11765.