Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1393-1402    DOI: 10.3785/j.issn.1008-973X.2013.08.011
    
A calibration technique based on frequency-domain characteristics for pipelined ADCs
SUN Ke-xu, HE Le-nian
Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

This paper proposed a novel digital calibration technique that can correct the capacitor mismatch and amplifier gain nonlinearity errors in pipelined ADCs. These errors were estimated based on their frequency-domain characteristics. Every time after estimation, the recovery function in digital domain was adjusted accordingly through a variable-step hill-climbing algorithm and an iteration algorithm to cancel those errors. Based on the proposed calibration method, a 15-bit 100MSPS pipelined ADC with amplifier gain nonlinearity and 1% capacitor mismatch was designed. Simulation results show that SNDR and SFDR improve from 56.4 dB to 91 dB and from 60.4 dBc to 107.6 dBc with this calibration technique, respectively. The effectiveness of the proposed calibration method is verified.



Published: 01 August 2013
CLC:  TN 401  
Cite this article:

SUN Ke-xu, HE Le-nian. A calibration technique based on frequency-domain characteristics for pipelined ADCs. J4, 2013, 47(8): 1393-1402.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.08.011     OR     http://www.zjujournals.com/eng/Y2013/V47/I8/1393


基于频域特性的流水线ADC数字校正技术

针对流水线结构模拟数字转换器(ADC)中电容失配及放大器增益非线性引入的误差,提出一种新的数字校正技术.基于误差的频域特性,对电容失配和放大器增益非线性进行检测.每次检测后,通过变步长爬山算法和迭代算法,在数字域相应地调整校正函数来消除误差.基于该数字校正方法设计一个带有放大器增益非线性和1%电容失配的15位100MSPS的流水线ADC.仿真结果表明,经过数字校正SNDR和SFDR分别从56.4 dB和60.4 dB提高到91 dB和107.6 dBc,验证了该数字校正方法的有效性.

[1] IIZUKA K, MATSUI H, UEDA M, et al. A 14-bit digitally self-calibrated pipelined ADC with adaptive bias optimization for arbitrary speeds up to 40MS/s [J]. IEEE Journal of Solid-State Circuits, 2006, 41(4): 883-890.

[2] MING J, LEWIS S H. An 8-bit 80Msample/s pipelined analog-to-digital converter with background calibration [J]. IEEE Journal of Solid-State Circuits, 2001, 36(10): 1489-1497.

[3] SHU Y S, SONG B S. A 15-bit linear 20-MS/s pipelined ADC digitally calibrated with signal-dependent dithering [J]. IEEE Journal of Solid-State Circuits, 2008, 43(2): 342-350.

[4] MASSOLINI R G, CESURA G, CASTELLO R. A fully digital fast convergence algorithm for nonlinearity correction in multistage ADC [J]. IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53(5): 389-393.

[5] SUN K, HE L. Parallel background calibration with signal-shifted correlation for pipelined ADC [C]∥ IEEE 13th International Symposium on Integrated Circuits. Singapore: IEEE, 2011, 11: 340-343.

[6] SUN K, HE L. A fast combination calibration of foreground and background for pipelined ADCs [J]. Journal of Semiconductors, 2012, 33(6): 1-11.

[7] MURMANN B, BOSER B. A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification [J]. IEEE Journal of Solid-State Circuits, 2003, 38(12): 2040-2050.

[8] MURMANN B. Digital calibration for low-power high-performance A/D conversion [D]. Berkeley: University of California Berkeley, 2003.

[9] PENG B, LI H, LEE S C, LIN P F , et al. A virtual-ADC digital background calibration technique for multistage A/D conversion [J]. IEEE Trans. Circuits Syst. II, Express Briefs, 2010, 57(11): 853-857.

[10] PENG B, HUANG G Z, LI H, et al. A 48-mW, 12-bit, 150-MS/s pipelined ADC with digital calibration in 65nm CMOS [C]∥ IEEE Custom Integrated Circuits Conference (CICC). San Jose: IEEE, 2011: 1-4.

[11] YUAN J, FUNG S W, CHAN K Y, XU R. A 12-bit 20 MS/s 56.3 mW pipelined ADC with interpolation-based nonlinear calibration [J]. IEEE Trans. Circuits Syst. I, Regular Papers, 2011, 59(3): 555-565.

[12] VAN DE VEL H, BUTER B A J, VAN DER PLOEG H, et al. A 1.2-V 250-mW 14-b 100-MS/s digitally calibrated pipeline ADC in 90-nm CMOS [J]. IEEE Journal of Solid-State Circuits, 2009, 44(4): 1047-1056.

[13] SANSEN W. Distortion in elementary transistor circuits [J]. IEEE Trans. Circuits Syst. II, 1999, 46(3): 315-325.

[14] KAZMI S M R, GOTO H, GUO H J, et al. A Novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems [J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 29-36.

[1] SHI Qi-feng, XUE Xiao-bo, HE Le-nian. A novel time error calibration technique for DACs[J]. J4, 2013, 47(11): 2025-2030.
[2] LU Yan-feng, HE Le-nian, CHEN Jun-xiao, WANG Xuan. Frequency compensation of high-gain four-stage operational amplifier[J]. J4, 2010, 44(11): 2137-2141.