Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 713-719    DOI: 10.3785/j.issn.1008-973X.2021.04.013
土木工程     
空心玻璃微珠/纳米TiO2复合材料的制备与表征
严守靖1(),王洋洋1,*(),迟凤霞1,罗雪2
1. 浙江省交通运输科学研究院 道路工程研究所,浙江 杭州 310023
2. 浙江大学 建筑工程学院,浙江 杭州 310027
Characterization and synthesis of hollow glass microspheres/nano-TiO2 composite material
Shou-jing YAN1(),Yang-yang WANG1,*(),Feng-xia CHI1,Xue LUO2
1. Institute of Road Engineering, Zhejiang Scientific Research Institute of Transport, Hangzhou 310023, China
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
 全文: PDF(922 KB)   HTML
摘要:

为了获得催化活性高、抗磨耗性能强的光催化复合材料,研究通过冷-碱腐蚀处理手段和高温黏附技术,制备空心玻璃微珠-纳米TiO2光催复合材料. 利用扫描电子显微镜(SEM)、X射线衍射(XRD)和UV-Vis等设备,对样品进行表征. 以汽车尾气为降解对象,采用搓揉试验机和自制的环境测试系统,分别测试复合材料的抗磨耗性能与光催化效能. 结果表明,纳米TiO2能够较好地附着到空心玻璃微珠表面,空心玻璃微珠-纳米TiO2光催化复合材料相对于纯纳米TiO2具有更强的透光能力和光催化降解能力. 该复合材料对汽车尾气中的一氧化氮和二氧化氮均有显著的降解效果,氮氧化物的净化效果高于一氧化碳和二氧化硫,具有较好的抗磨耗能力.

关键词: 空心玻璃微珠纳米TiO2复合材料光催化性能    
Abstract:

A photocatalytic composite material was prepared by cold-alkali corrosion treatment and high-temperature adhesion technique in order to obtain a photocatalytic composite material with high catalytic activity and good wear resistance. Then scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Vis and other equipment were used to characterize the sample. The anti-wearing performance and photocatalytic of this composite material were tested by kneading machine and custom-designed environmental test setup, respectively, using exhaust gas of automobile. Results showed that nano-TiO2 embedded on the surface of hollow glass microspheres homogeneously. Hollow glass microspheres/nano-TiO2 composite photocatalyst has higher light transmission ability and degradation efficiency than pure nano-TiO2. The composite material has significant degradation effects on nitric oxide and nitrogen dioxide in automobile exhaust. The purification effect of nitrogen oxides is higher than carbon monoxide and sulfur dioxide, and has good anti-wearing ability.

Key words: hollow glass bead    nano-TiO2    composite material    photocatalytic property
收稿日期: 2020-02-25 出版日期: 2021-05-07
CLC:  O 649  
基金资助: 浙江省自然科学基金资助项目(LQY18E080001);浙江省交通运输厅资助项目(2019054)
通讯作者: 王洋洋     E-mail: ysjgalaxy@163.com;profxnzhang@126.com
作者简介: 严守靖(1993—),男,硕士生,从事光催化降解材料与路面无损检测的研究. orcid.org/0000-0003-2951-7268.E-mail: ysjgalaxy@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
严守靖
王洋洋
迟凤霞
罗雪

引用本文:

严守靖,王洋洋,迟凤霞,罗雪. 空心玻璃微珠/纳米TiO2复合材料的制备与表征[J]. 浙江大学学报(工学版), 2021, 55(4): 713-719.

Shou-jing YAN,Yang-yang WANG,Feng-xia CHI,Xue LUO. Characterization and synthesis of hollow glass microspheres/nano-TiO2 composite material. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 713-719.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.013        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/713

组号 试件数量 $m$/g
BG 3 0
HGM 3 0
TiO2 3 1.601
HGM-TiO2 3 1.601
表 1  单位质量复合催化剂中纳米二氧化钛有效负载量
图 1  光催化性能测试过程
图 2  搓揉磨耗试验机
图 3  样品在不同放大倍率下的SEM图
图 4  不同样品的XRD图
图 5  空心玻璃微珠、纳米TiO2和空心玻璃微珠-纳米TiO2透光光谱
降解
对象
纳米TiO2 空心玻璃微珠-纳米TiO2复合材料
${V_{\max }}$/(mg·m?3·min?1) $K$/% ${V_{\max }}$/(mg·m?3·min?1) $K$/%
NO 2.34 88.24 3.41 89.38
NO2 1.20 88.89 1.70 91.67
CO 17.1 9.47 22.90 14.52
SO2 1.29 9.70 1.51 12.00
表 2  单阶段汽车尾气光催化降解评价效果
图 6  NO、NO2、SO2、CO气体的降解效能
图 7  NO、NO2、SO2、CO气体的残余降解效能
1 ZHAO Y, GAO P, YANG W, et al Vehicle exhaust: an overstated cause of haze in China[J]. Science of the Total Environment, 2018, 612 (8): 490- 491
2 SHI G, LIU J, WANG H, et al Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models[J]. Environmental Pollution, 2018, 233 (10): 1058- 1067
3 ZOUZELKA R, RATHOUSKY J Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology[J]. Applied Catalysis B-environmental, 2017, 217 (6): 466- 476
4 韩翠, 邵谦 提高二氧化钛纳米管光电活性方法的研究进展[J]. 现代化工, 2016, 36 (8): 33- 36
HAN Cui, SHAO Qian Research progress of the methods for improvement of photoelectrochemical activity of TiO2 nanotubes [J]. Modern Chemical Industry, 2016, 36 (8): 33- 36
5 王瑶. 银掺杂多孔二氧化钛的制备、表征和光催化性能的研究[D]. 太原: 中北大学, 2016.
WANG Yao. Preparation, characterization and photocatalytic properties of Ag-deposited porous titanium oxide powders [D]. Taiyuan: North University of China, 2016.
6 钟炳伟, 胡凯凯, 董烨, 等 钛铁矿制备二氧化钛-四氧化三铁复合材料及其光催化应用[J]. 化学通报, 2018, 81 (7): 592- 597
ZHONG Bing-wei, HU Kai-kai, DONG Ye, et al Synthesis of Fe3O4/TiO2 composites from ilmenite and the photocatalytic performance thereof [J]. Chemistry, 2018, 81 (7): 592- 597
7 王培三. 几种纳米复合材料光催化剂的制备及光催化性能研究[D]. 合肥: 中国科学技术大学, 2018.
WANG Pei-san. Preparation of several nano-composites photocatalyst and their photocatalytic properties [D]. Hefei: University of Science and Technology of China, 2018.
8 夏志伟. 玻璃微珠表面纳米二氧化钛薄膜包覆及其隔热性能研究[D]. 广州: 华南理工大学, 2015.
XIA Zhi-wei. Research on nono-TiO2 films coated hollow glass microspheres and their thermal insulation property [D]. Guangzhou: South China University of Technology, 2015.
9 范利灵, 吴建功, 林宝伟, 等 用化学沉积法在以废碎玻璃瓶为原料制备的玻璃微珠表面镀二氧化钛薄膜[J]. 大连工业大学学报, 2016, 35 (4): 289- 292
FAN Li-ling, WU Jian-gong, LIN Bao-wei, et al Glass beads prepared from broken glass bottles material and coating with TiO2 thin film using chemical deposition method [J]. Journal of Dalian Polytechnic University, 2016, 35 (4): 289- 292
10 LENG Z, YUB H, GAO Z Study on air-purifying performance of asphalt mixture specimens coated with titanium dioxide using different methods[J]. International Journal of Pavement Research and Technology, 2018, 8 (3): 1- 8
11 李东海. 基于搓揉试验的沥青路面抗滑性能研究[D]. 广州: 华南理工大学, 2013.
LI Dong-hai. Research on anti-slide performance of asphalt pavement in kneading experiment [D]. Guangzhou: South China University of Technology, 2013.
12 房玉. 硼硅酸盐玻璃组成、结构与性能的研究[D]. 武汉: 武汉理工大学, 2012.
FANG Yu. Study on the component, structure and properties of borosilicate glass [D]. Wuhan: Wuhan University of Technology, 2012.
13 LENG Z, YUB H Novel method of coating titanium dioxide onto asphalt mixture based on the breath figure process for air-purifying purpose[J]. Journal of Materials in Civil Engineering, 2016, 28 (5): 1- 7
14 CUNHA D L, KUZNETSOY A, ACHETE C A, et al Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: photoactivity, leaching and regeneration process [J]. PeerJ, 2018, 6 (3): 1- 19
15 LIANG R, SCHNEIDER O M, LUN N, et al Concurrent photocatalytic degradation of organic contaminants and photocathodic protection of steel Ag–TiO2 composites [J]. Materialia, 2018, 3 (8): 212- 217
16 YOON S, KIM E, YUN Y, et al Chemical durability and photocatalyst activity of acid-treated ceramic TiO2 nanocomposites [J]. Journal of Industrial and Engineering Chemistry, 2018, 64 (3): 230- 236
17 HAKKI A, YANG L, WANG F, et al The effect of Interfacial chemical bonding in TiO2-SiO2 composites on their photocatalytic NOx abatement performance [J]. Journal of Visualized Experiments, 2017, 2017 (125): 1- 11
18 NOTODARMOJO S, SUGIYANA D, HANDAJANI M, et al Synthesis of TiO2 nanofiber-nanoparticle composite catalyst and its photocatalytic decolorization performance of reactive black 5 dye from aqueous solution [J]. Journal of Engineering and Technological Sciences, 2017, 49 (3): 340- 356
doi: 10.5614/j.eng.technol.sci.2017.49.3.4
19 DARIANIR S, ESMAEILI A, MORTEZAALI A, et al Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles [J]. Optik, 2016, 127 (18): 7143- 7154
doi: 10.1016/j.ijleo.2016.04.026
20 GUO Q, ZHOU C, MA Z, et al Elementary photocatalytic chemistry on TiO2 surfaces [J]. Chemical Society Reviews, 2016, 45 (13): 3701- 3730
doi: 10.1039/C5CS00448A
21 LUEVANOHIPOLITO E, LA CRUZ A M Enhancement of photocatalytic properties of TiO2 for NO photo-oxidation by optimized sol-gel synthesis [J]. Research on Chemical Intermediates, 2016, 42 (9): 7065- 7084
doi: 10.1007/s11164-016-2518-7
22 王积森, 冯忠彬, 孙金全, 等 纳米TiO2的光催化机理及其影响因素分析 [J]. 微纳电子技术, 2008, 45 (1): 28- 32
WANG Ji-sen, FENG Zhong-bin, SUN Jin-quan, et al Photocatalytic mechanism of nano-TiO2 and analysis on factors influencing its photocatalytic activity [J]. Micronanoelectronic Technology, 2008, 45 (1): 28- 32
doi: 10.3969/j.issn.1671-4776.2008.01.008
[1] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[2] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[3] 李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.
[4] 侯世成,任王瑜,朱清,陈卫祥. Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性[J]. 浙江大学学报(工学版), 2019, 53(8): 1610-1617.
[5] 解五一,高霄,何思宇,肖晓晖. 面向复合材料自动铺放设备的输带速度与张力协同解耦控制[J]. 浙江大学学报(工学版), 2019, 53(3): 455-462.
[6] 王激扬, 马卫强, 胡志华, 万成霖. PE纤维掺量对水泥基复合材料力学性能的影响[J]. 浙江大学学报(工学版), 2017, 51(11): 2130-2135.
[7] 周二振,应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1671-1676.
[8] 刘肃肃,余音. 复材非线性及渐进损伤的态型近场动力学模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 993-1000.
[9] 倪楠楠, 温月芳, 贺德龙, 王程成, 益小苏, 许亚洪. 功能无纺布插层复合材料的结构阻尼性能[J]. 浙江大学学报(工学版), 2016, 50(2): 353-359.
[10] 陈艳,高尚君,于哲峰,汪海. 复合材料翼盒低速冲击分层阈值力模型[J]. 浙江大学学报(工学版), 2016, 50(1): 186-192.
[11] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433.
[12] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[13] 柯俊,史文库,钱琛,李国民,袁可. 复合材料板簧刚度的预测及匹配设计方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2103-2110.
[14] 储火, 陶伟明. 纤维增强复合材料冲击失效的二元模型分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1502-1507.
[15] 诸葛萍, 丁勇, 侯苏伟, 强士中. 新型CFRP筋锚具优化设计及疲劳性能试验[J]. 浙江大学学报(工学版), 2014, 48(10): 1822-1827.