计算机技术、信息工程 |
|
|
|
|
基于各向异性高斯分布的视觉跟踪算法 |
熊昌镇( ),卢颜,闫佳庆 |
北方工业大学 城市道路交通智能控制技术北京市重点实验室,北京 100144 |
|
Visual tracking algorithm based on anisotropic Gaussian distribution |
Chang-zhen XIONG( ),Yan LU,Jia-qing YAN |
Beijing Key Laboratory of Urban Traffic Intelligent Control Technology, North China University of Technology, Beijing 100144, China |
1 |
BOLME D S, BEVERIDGEJ R, DRAPERB A, et al. Visual object tracking using adaptive correlation filters [C]// Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2544-2550.
|
2 |
HENRIQUES J F, RUI C, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels [C]// Computer Vision-ECCV 2012. Florence: Springer, 2012: 702-715.
|
3 |
HENRIQUESJ F, CASEIRO R, MARTINS P, et al High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596
doi: 10.1109/TPAMI.2014.2345390
|
4 |
DANELLJAN M, KHAN F S, FELSBERG M. Adaptive color attributes for real-time visual tracking [C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1090-1097.
|
5 |
熊昌镇, 赵璐璐, 郭芬红 自适应特征融合的核相关滤波跟踪算法[J]. 计算机辅助设计与图形学学报, 2017, 29 (6): 1068- 1074 XIONG Chang-zhen, ZHAO Lu-lu, GUO Fen-hong Kernelized correlation filters tracking based on adaptive feature fusion[J]. Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (6): 1068- 1074
doi: 10.3969/j.issn.1003-9775.2017.06.012
|
6 |
BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking [C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. California: IEEE, 2016: 1401-1409.
|
7 |
MA C, HUANG J, YANG X, et al. Hierarchical convolutional features for visual tracking [C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3074-3082.
|
8 |
MA C, HUANG J B, YANG X, et al Robust visual tracking via hierarchical convolutional features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (11): 2709- 2723
doi: 10.1109/TPAMI.2018.2865311
|
9 |
DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking [C]// Computer Vision-ECCV 2016. Amsterdam: Springer, 2016: 472-488.
|
10 |
DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6931-6939.
|
11 |
DANELLJAN M, HAGER G, KHAN F S, et al Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (8): 1561- 1575
doi: 10.1109/TPAMI.2016.2609928
|
12 |
LI Y, ZHU J. A scale adaptive kernel correlation filter tracker with feature integration [C]// Proceedings of 2014 European Conference on Computer Vision. Zurich: Springer, 2014: 254-265.
|
13 |
GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking [C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1144-1152.
|
14 |
LUKEZIC A, VOJIR T, ?EHOVIN L, et al. Discriminative correlation filter with channel and spatial reliability [C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4847-4856.
|
15 |
DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking [C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4310-318.
|
16 |
卢维, 项志宇, 于海滨, 刘济林 基于自适应多特征表观模型的目标压缩跟踪[J]. 浙江大学学报: 工学版, 2014, 48 (12): 2132- 2138 LU Wei, XIANG Zhi-yu, YU Hai-bin, LIU Ji-lin Object compressive tracking based on adaptive multi-feature appearance model[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (12): 2132- 2138
|
17 |
WU Y, LIM J, YANG M Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848
doi: 10.1109/TPAMI.2014.2388226
|
18 |
KRISTAN M, MATAS J, LEONARDIS A, et al. The visual object tracking VOT2016 challenge results [C]// Computer Vision-ECCV 2016. Amsterdam: Springer, 2016: 777-823.
|
19 |
DANELLJAN M, HAGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking [C]// Proceedings of the IEEE International Conference on Computer Vision Workshop. Santiago: IEEE, 2015: 621-629.
|
20 |
BERTINETTO L, VALMADRE J, HENRIQUESJ F, et al. Fully-convolutional siamese networks for object tracking [C]// Computer Vision-ECCV 2016. Amsterdam: Springer, 2016: 850-865.
|
21 |
VALMADRE J, BERTINETTO L, HENRIQUESJ F, et al. End-to-end representation learning for correlation filter based tracking [C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5000-5008.
|
22 |
LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971-8980.
|
23 |
ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking [C]// Computer Vision - ECCV 2018. Munich: Springer, 2018: 103-119.
|
24 |
ZHANG Z, PENG H, WANG Q, et al. Deeper and wider siamese networks for real-time visual tracking [C]// Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4591-4600.
|
25 |
FAN H, LING H. Siamese cascaded region proposal networks for real-time visual tracking [C]// Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: [S. n.], 2019.
|
26 |
LI Y, ZHU J, HOI S, et al Robust estimation of similarity transformation for visual object tracking[J]. AAAI Technical Track: Vision, 2019, 33 (1): 8666- 8673
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|