Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (10): 1892-1897    DOI: 10.3785/j.issn.1008-973X.2019.10.006
机械与能源工程     
基于数字液压缸组的波浪能装置压力匹配
林勇刚(),许建强,刘宏伟,李伟
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Pressure matching of wave energy device based on digital hydraulic cylinder group
Yong-gang LIN(),Jian-qiang XU,Hong-wei LIU,Wei LI
State Key Laboratory of Fluid Power Transmission and Mechatronic System, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1049 KB)   HTML
摘要:

为了解决分布式波浪能装置液压传动系统中不同支路液压油汇集时的压力不均衡问题,提出新型的数字液压缸组以替代常规的液压缸. 该液压缸组由多个面积不同的液压缸组成,由高速开关阀控制液压缸组切入传动系统的液压缸数目,这意味着可以控制不同液压支路的压力以实现不同支路之间的压力匹配. 通过建模仿真和半物理试验表明,与基于传统的液压缸的分布式波浪能装置相比,基于数字液压缸组的分布式波浪能装置能够有效减少在不同波浪载荷作用下的不同液压支路的压力不平衡,系统中不同浮力摆均能够吸收波浪能对外做功,驱动液压马达稳定持续运行.

关键词: 波浪能浮力摆波浪能发电装置数字液压缸组分布式捕能集中发电    
Abstract:

A new digital hydraulic cylinder group was proposed to replace traditional hydraulic cylinder in order to solve the pressure distribution imbalance among different hydraulic branches when the hydraulic oil of distributed wave energy conversion systems collected together. The proposed hydraulic cylinder group consisted of several cylinders with different piston areas and the number of the connected cylinders was controlled by high-speed switching valves, which meant that different hydraulic branches’ pressures could be controlled to reach pressure balance among them. The modeling simulation and semi-hydraulic experiment results show that the distributed wave energy convertor systems based on digital hydraulic cylinder group can effectively reduce the pressure imbalance among different wave forced hydraulic branches compared with those based on traditional hydraulic cylinder. All different flaps of different branches can absorb wave energy to drive the hydraulic motor to run steadily.

Key words: wave energy    oscillating surge wave energy convertor    digital hydraulic cylinder group    distributed energy capture    integrated power generation
收稿日期: 2018-08-26 出版日期: 2019-09-30
CLC:  TK 79  
作者简介: 林勇刚(1976—),男,教授,博导,从事海洋能发电的研究. orcid.org/0000-0001-5457-6388. E-mail: yglin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林勇刚
许建强
刘宏伟
李伟

引用本文:

林勇刚,许建强,刘宏伟,李伟. 基于数字液压缸组的波浪能装置压力匹配[J]. 浙江大学学报(工学版), 2019, 53(10): 1892-1897.

Yong-gang LIN,Jian-qiang XU,Hong-wei LIU,Wei LI. Pressure matching of wave energy device based on digital hydraulic cylinder group. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1892-1897.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.10.006        http://www.zjujournals.com/eng/CN/Y2019/V53/I10/1892

图 1  数字液压缸组原理图
控制量 活塞总面
积状态
数字控
制编码
活塞面积
大(2-1 & 2-4)
活塞面积
中(2-2 & 2-5)
活塞面积
小(2-3 & 2-6)
0 0 0 无效状态 000
0 0 1 001
0 1 0 010
1 0 0 100
0 1 1 小+中 011
1 0 1 小+大 101
1 1 0 中+大 110
1 1 1 小+中+大 111
表 1  不同状态下数字液压缸组的编码
图 2  波浪能分散捕能集中发电示意图
图 3  数字液压缸组及发电系统仿真模型
图 4  浮力摆波浪捕能装置结构动力分析
图 5  浮力摆上的模拟波浪作用力
图 6  不同控制策略下的仿真结果对比图
图 7  分布式波浪能半物理实验台
图 8  半物理实验曲线
1 LIN Y G, BAO J W, LIU H W, et al Review of hydraulic transmission technologies for wave power generation[J]. Renewable and Sustainable Energy Reviews, 2015, 50 (10): 194- 203
2 HENDERSON R Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable Energy, 2006, 31 (2): 271- 283
doi: 10.1016/j.renene.2005.08.021
3 HAI L, SVENSSON O, ISBERG J, et al Modelling a point absorbing wave energy converter by the equivalent electric circuit theory: a feasibility study[J]. Journal of Applied Physics, 2015, 117 (16): 899- 918
4 盛松伟, 张亚群, 王坤林, 等 鹰式波浪能发电装置发电系统研究[J]. 可再生能源, 2015, (9): 1422- 1426
SHENG Song-wei, ZHANG Ya-qun, WANG Kun-lin, et al Research on power generation system of Eagle wave energy generating device[J]. Renewable Energy, 2015, (9): 1422- 1426
5 FRANZITTA V, COLUCCI A, CURTO D, et al. A linear generator for a waveroller power device [C] // Oceans Conference. Aberdeen: [s. n.], 2017: 1-5.
6 NIEMI P O, LINJAMA M, LAAMANEN A, et al. Parallel pump-controlled multi-chamber cylinder[C] // Symposium on Fluid Power and Motion Control. Sarasota: ASME, 2014.
7 SONG W, SHI H, LIU P Simulation of oscillating buoywave energy generation system based on double-stroke hydraulic transmission[J]. Acta Energiae Solaris Sinica, 2016,
8 LINJAMA M, VIHTANEN H P, SIPOLA A, et al. Secondary controlled multi-chamber hydraulic cylinder [C] // Proceedings of the 11th Scandinavian International Conference on Fluid Power (SICFP09). Sweden: LiU-Tryck, Linkoeping, 2009.
9 CAO W, LI D, CHEN Z, et al. Research on model and simulation of hydraulic lifting system of the wave power generating platform based on AMESim [C] // International Industrial Informatics and Computer Engineering Conference. Xi’an: Atlantis Press, 2015.
10 ZHU L J Simulation of the hydraulic hybrid system based on AMESim[J]. Energy Engineering, 2017, (1): 17- 23
11 黄炜. 浮力摆式波浪能发电装置仿真与实验研究[D]. 杭州: 浙江大学, 2012.
HUANG Wei. Simulation and experimental study of buoyancy pendulum wave power generation equipment [D]. Hangzhou: Zhejiang University, 2012.
12 YUKIO K, MATTHIAS L, HUBERTUS M. Simulation of a ocean wave energy converter using hydraulic transmission [C] // 7th International Fluid Power Conference. Aachen: [s. n.], 2010: 1-12.
13 张大海. 浮力摆式波浪能发电装置关键技术研究[D]. 杭州: 浙江大学, 2011.
ZHANG Da-hai. Research on key technologies of buoyancy pendulum wave power plant [D]. Hangzhou: Zhejiang University, 2011.
14 滕斌, 陈文. 摆式波能转换装置的水动力分析模型[C]//第十五届中国海洋(岸)工程学术讨论会论文集. 太原: 海洋出版社, 2011: 653-658.
TENG Bin, CHEN Wen. Hydrodynamic analysis model of tilting wave energy converter [C] // Proceedings of the 15th China Ocean (Coastal) Engineering Symposium. Taiyuan: Ocean Press, 2011: 653-658.
15 MICHAILIDES C, ANGELIDES D Modeling of energy extraction and behavior of a flexible floating breakwater[J]. Applied Ocean Research, 2012, 35 (1): 77- 94
[1] 吕沁, 李德堂, 唐文涛, 曹伟男,金豁然, 胡星辰. 基于液压传动的振荡浮子式波浪发电系统设计[J]. 浙江大学学报(工学版), 2016, 50(2): 234-240.