Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1697-1703    DOI: 10.3785/j.issn.1008-973X.2019.09.008
土木与建筑工程     
多塔悬索桥全竖向摩擦板式抗滑方案
戴显荣1(),王路2,3,*(),王昌将1,王晓阳1,沈锐利2
1. 浙江省交通规划设计研究院,浙江 杭州 310006
2. 西南交通大学 土木工程学院,四川 成都 610031
3. 华南理工大学 土木与交通学院,广东 广州 510641
Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge
Xian-rong DAI1(),Lu WANG2,3,*(),Chang-jiang WANG1,Xiao-yang WANG1,Rui-li SHEN2
1. Zhejiang Provincial Institute of Communications Planning, Design and Research, Hangzhou 310006, China
2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
3. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
 全文: PDF(899 KB)   HTML
摘要:

为解决主缆与中主鞍座间的滑移对多塔悬索桥结构设计的约束,研究在鞍座内增设竖向摩擦板的抗滑方案,并制作用于探明设有竖向摩擦板后索股滑移特性的试验模型,考虑试验索股数目的影响,开展共4种工况的测试研究. 结合既有侧向力研究成果,构建主缆滑移分析模型;以首座采用混凝土中塔的三塔双层悬索桥(温州瓯江北口大桥)为工程实例,通过调整竖向摩擦板数量进行抗滑设计比选. 结果表明:在不平衡力持续加载下,主缆索股表现为自上而下的分层滑移现象;增设竖向摩擦板是提高主缆抗滑能力的有效途径;所建立的滑移分析模型可用于设置竖向摩擦板时的主缆抗滑研究;列间全置竖向摩擦板可为主缆提供相对最优的抗滑性能.

关键词: 桥梁工程主缆索股竖向摩擦板摩擦系数滑移试验    
Abstract:

The anti-slip scheme of adding vertical friction plate to the saddle was investigated, in order to solve the structural design constraint of multi-pylon suspension bridge caused by slip between the main cable and the middle saddle. The corresponding test models were made to investigate the slip behavior of cable strands when equipped with vertical friction plate. Totally, four experimental cases were carried out considering the effects of the number of strands. Combined with the existing studies on the lateral force of main cable, a slip analytical model was established. A three-pylon double-deck suspension bridge that firstly adopted concrete mid-pylon, namely the Oujiang River North Estuary Bridge, was taken as a practical engineering case; and the comparison study for anti-slip design was conducted by adjusting the number of vertical friction plates. Results show that, with the continuous loading of the unbalanced force, the cable strands display layered-slipping phenomenon from top to down obviously. The friction resistance of the main cable can be enhanced effectively through adding vertical friction plate. The proposed analytical model is applicable to the anti-slip design of the main cable when the vertical friction plate is added. Setting vertical friction plates among saddle notches can provide the main cable with the relatively best anti-slip performance.

Key words: bridge engineering    main cable strands    vertical friction plate    friction coefficient    slip test
收稿日期: 2018-07-20 出版日期: 2019-09-12
CLC:  U 448.25  
通讯作者: 王路     E-mail: daixr@zjic.com;wangluct@scut.edu.cn
作者简介: 戴显荣(1971—),男,教授级高工,从事现代桥梁设计研究. orcid.org/0000-0002-0425-3289. E-mail: daixr@zjic.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
戴显荣
王路
王昌将
王晓阳
沈锐利

引用本文:

戴显荣,王路,王昌将,王晓阳,沈锐利. 多塔悬索桥全竖向摩擦板式抗滑方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1697-1703.

Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.008        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1697

图 1  试验用拼装式鞍座及索股
图 2  滑移试验模型总体设置
图 3  滑移试验现场位移测区设置
工况编号 ns 索股编号 设位移测点的索股
A 1 1# 1#
B 4 1#~4# 1#~4#
C 7 1#~7# 1#、3#~7#
D 10 1#~10# 1#、3#~4#、6#~10#
表 1  滑移试验工况设置情况
图 4  索股滑移特性分析曲线(工况D的8#索股)
工况编号 滑移索股编号 μ(i)
工况A 1# 0.371
工况B 2# 0.331
4# 0.458
1# 0.486
工况C 5# 0.337
6# 0.337
4# 0.548
1# 0.591
工况D 8# 0.312
10# 0.360
6# 0.495
4# 0.618
1# 0.639
表 2  名义摩擦系数试验结果
图 5  索股滑移分析模型
图 6  试验工况下计算值与测试值的对比情况
图 7  3种抗滑方案下实桥索股的滑移情况
方案 nv μ K
首滑 终滑 首滑 终滑
C1 14 0.179 0.422 1.20 2.83
C2 10 0.150 0.330 1.01 2.22
C3 6 0.150 0.283 1.01 1.90
表 3  3种抗滑方案的计算结果
1 张劲泉, 曲兆乐, 宋建永, 等 多塔连跨悬索桥综述[J]. 公路交通科技, 2011, 28 (9): 30- 45
ZHANG Jin-quan, QU Zhao-le, SONG Jian-yong Overview of multi-pylon multi-span suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2011, 28 (9): 30- 45
doi: 10.3969/j.issn.1002-0268.2011.09.006
2 THAI H T, CHOI D H Advanced analysis of multi-span suspension bridges[J]. Journal of Constructional Steel Research, 2013, 90 (5): 29- 41
3 ZHANG L W, XIAO R C, SUN B, et al Study on economic performances of multi-span suspension bridges part 1: simple estimation formulas[J]. Structural Engineering and Mechanics, 2013, 47 (2): 265- 286
doi: 10.12989/sem.2013.47.2.265
4 沈锐利, 张兴标, 彭丹 多塔悬索桥结构变形的实用计算方法[J]. 中国公路学报, 2016, 29 (6): 207- 213
SHEN Rui-li, ZHANG Xing-biao, PENG Dan Practical calculation method for structural deformation of multi-span suspension bridge[J]. China Journal of Highway and Transport, 2016, 29 (6): 207- 213
doi: 10.3969/j.issn.1001-7372.2016.06.007
5 万田保, 王忠彬, 韩大章, 等 泰州长江公路大桥三塔悬索桥中塔结构形式的选取[J]. 世界桥梁, 2008, (1): 1- 4
WAN Tian-bao, WANG Zhong-bin, HAN Da-zhang, et al Selection of structural type for intermediate tower of three-tower suspension bridge of Taizhou Changjiang River highway bridge[J]. World Bridges, 2008, (1): 1- 4
6 王昌将, 王路, 叶雨清, 等 多塔悬索桥中塔鞍座水平摩擦板抗滑方案试验研究[J]. 桥梁建设, 2018, 48 (2): 13- 18
WANG Chang-jiang, WANG Lu, YE Yue-qing, et al Test study of anti-slip scheme of horizontal friction plates for middle tower saddle of multi-tower suspension bridge[J]. Bridge Construction, 2018, 48 (2): 13- 18
doi: 10.3969/j.issn.1003-4722.2018.02.003
7 TAKENA K, SASAKI M, HATA K, et al Slip behavior of cable against saddle in suspension bridges[J]. Journal of Structural Engineering, 1992, 118 (2): 377- 391
doi: 10.1061/(ASCE)0733-9445(1992)118:2(377)
8 ZHANG Q H, CHENG Z Y, CUI C, et al Analytical model for frictional resistance between cable and saddle of suspension bridges equipped with vertical friction plates[J]. Journal of Bridge Engineering, 2016, 22 (1): 1- 12
9 王路, 沈锐利, 王昌将, 等 悬索桥主缆与索鞍间侧向力理论计算方法与公式研究[J]. 土木工程学报, 2017, 50 (12): 87- 96
WANG Lu, SHEN Rui-li, WANG Chang-jiang, et al Theoretical calculation method and formula for lateral force between main cable and cable saddle for suspension bridge[J]. China Civil Engineering Journal, 2017, 50 (12): 87- 96
10 沈锐利, 王路, 王昌将, 等 悬索桥主缆与索鞍间侧向力分布模式的模型试验研究[J]. 土木工程学报, 2017, 50 (10): 75- 81
SHEN Rui-li, WANG Lu, WANG Chang-jiang, et al Experimental study on distribution pattern of lateral force between main cable and cable saddle for suspension bridge[J]. China Civil Engineering Journal, 2017, 50 (10): 75- 81
11 HASEGAWA K, KOJIMA H, SASAKI M, et al Frictional resistance between cable and saddle equipped with friction plate[J]. Journal of Structural Engineering, 1995, 121 (1): 1- 14
doi: 10.1061/(ASCE)0733-9445(1995)121:1(1)
12 周凌远, 李乔 缆索与鞍座间的摩擦特性[J]. 兰州理工大学学报, 2011, 37 (2): 117- 121
ZHOU Ling-yuan, LI Qiao Characteristics of friction between cable and saddle[J]. Journal of Lanzhou University of Technology, 2011, 37 (2): 117- 121
doi: 10.3969/j.issn.1673-5196.2011.02.027
13 张清华, 李乔 悬索桥主缆与鞍座摩擦特性试验研究[J]. 土木工程学报, 2013, 46 (4): 85- 92
ZHANG Qing-hua, LI Qiao Study on cable-saddle frictional characteristics of long-span suspension bridges[J]. China Civil Engineering Journal, 2013, 46 (4): 85- 92
[1] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[2] 李明, 刘扬, 杨兴胜. 考虑轴重相关的随机车流荷载效应[J]. 浙江大学学报(工学版), 2019, 53(1): 78-88.
[3] 赵人达, 贾毅, 占玉林, 王永宝, 廖平, 李福海, 庞立果. 强震区多跨长联连续梁桥减隔震设计[J]. 浙江大学学报(工学版), 2018, 52(5): 886-895.
[4] 陈德, 韩森, 苏谦, 韩霄. 基于抗滑降噪性能的沥青路面表面构造评价指标[J]. 浙江大学学报(工学版), 2017, 51(5): 896-903.
[5] 项贻强,刘成熹,唐国斌,陈雪奖,吴天真,罗晓峰. 计算独柱墩帽梁承载力的改进撑杆-系杆模型[J]. J4, 2012, 46(7): 1248-1254.
[6] 叶雨清 陈勇 孙炳楠 楼文娟 俞菊虎. 钱江四桥健康监测特征指标趋势分析[J]. J4, 2009, 43(2): 394-400.