Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (8): 1536-1545    DOI: 10.3785/j.issn.1008-973X.2019.08.012
计算机与控制工程     
军事通信网络修复策略
陈冠宇1,2(),孙鹏1,3,*(),张杰勇1,武君胜4
1. 空军工程大学 信息与导航学院,陕西 西安 710077
2. 中国人民解放军95816部队,湖北 广水432700
3. 西北工业大学 计算机学院,陕西 西安 710072
4. 西北工业大学 软件与微电子学院,陕西 西安 710072
Repair strategy of military communication network
Guan-yu CHEN1,2(),Peng SUN1,3,*(),Jie-yong ZHANG1,Jun-sheng WU4
1. College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China
2. Unit 95816 of People’s Liberation Army, Hubei 432700, China
3. Department of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
4. Department of Software Micro-electronics, Northwestern Polytechnical University, Xi’an 710072, China
 全文: PDF(1552 KB)   HTML
摘要:

描述军事通信网络中节点遭受打击后的网络修复问题,采用网络加边的方法对通信网络的拓扑结构进行修复;建立以最大化网络抗毁性为目标函数,网络连接成本和网络连通为约束的增边修复模型;定义考虑冗余边和必须边的网络连接成本;设计基于离散人工蜂群算法的模型求解算法. 通过具体的军事通信网络案例,在随机攻击和故意攻击2种典型攻击策略下进行仿真实验. 在实验中,与随机加边、低度数加边以及低介数加边方法进行对比,结果表明采用所提出方法修复后的网络抗毁性更高,具有一定的优越性.

关键词: 军事通信网络修复模型修复策略增边离散人工蜂群算法信息流    
Abstract:

The network repair problem after the nodes in the military communication network were hit was described, and the topology of the communication network was repaired by using the network edge-adding method. An edge addition repair model was established with maximizing network invulnerability as objective function, network connection cost and network connectivity as constraints. The network connection cost model considering redundant and necessary edges was defined. A model solving method based on the discrete artificial bee colony algorithm was proposed. Through specific cases of military communication network, simulation experiments were conducted under random and deliberate attacks, respectively. In the experiment, the proposed method was compared with other edge-adding methods, such as random addition, low degree first addition and low betweenness addition. Results showed that the proposed method can improve the survivability of network and the result was better than that of other three methods.

Key words: military communication network    repair model    repair strategy    edge addition    discrete artificial bee colony algorithm    information flow
收稿日期: 2017-07-03 出版日期: 2019-08-13
CLC:  TN 915  
通讯作者: 孙鹏     E-mail: ChenPTN@163.com;Sunypt@163.com
作者简介: 陈冠宇(1994—),男,硕士,从事通信网络、复杂网络研究. orcid.org/0000-0003-0006-8710. E-mail: ChenPTN@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈冠宇
孙鹏
张杰勇
武君胜

引用本文:

陈冠宇,孙鹏,张杰勇,武君胜. 军事通信网络修复策略[J]. 浙江大学学报(工学版), 2019, 53(8): 1536-1545.

Guan-yu CHEN,Peng SUN,Jie-yong ZHANG,Jun-sheng WU. Repair strategy of military communication network. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1536-1545.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.08.012        http://www.zjujournals.com/eng/CN/Y2019/V53/I8/1536

图 1  C2组织实体间的相互关系
图 2  C2组织中的信息流
图 3  通信实体间的连接关系
图 4  C2组织通信结构
序号 YN(1) YN(2) ··· YN(n ··· YN(Z
0?1值 x1 x2 ··· xn ··· xZ
表 1  双串编码结构
战术决策实体 所指控的平台
${\rm{TD}}{{\rm{M}}_{\rm{1}}}$ ${P_{\rm{1}}}{\rm{,}}{P_{{\rm{10}}}}{\rm{,}}{P_{{\rm{11}}}}{\rm{,}}{P_{{\rm{14}}}}{\rm{,}}{P_{{\rm{15}}}}$
${\rm{TD}}{{\rm{M}}_2}$ ${P_{\rm{2}}}{\rm{,}}{P_{\rm{6}}}{\rm{,}}{P_{\rm{8}}}{\rm{,}}{P_{{\rm{16}}}}{\rm{,}}{P_{{\rm{19}}}}$
${\rm{TD}}{{\rm{M}}_{\rm{3}}}$ ${P_{\rm{7}}}{\rm{,}}{P_{{\rm{12}}}}{\rm{,}}{P_{{\rm{13}}}}{\rm{,}}{P_{{\rm{20}}}}$
${\rm{TD}}{{\rm{M}}_{\rm{4}}}$ ${P_{\rm{3}}}{\rm{,}}{P_{\rm{4}}}{\rm{,}}{P_{\rm{5}}}{\rm{,}}{P_{\rm{9}}}{\rm{,}}{P_{{\rm{17}}}}{\rm{,}}{P_{{\rm{18}}}}$
表 2  战术决策实体对平台的指挥控制情况
决策实体 所连接的通信实体 决策实体 所连接的通信实体
${\rm{ODM}}$ ${C_{\rm{1}}}{\rm{,}}{C_{{\rm{24}}}}$ ${\rm{TD}}{{\rm{M}}_{\rm{3}}}$ ${C_{{\rm{36}}}}$
${\rm{TD}}{{\rm{M}}_{\rm{1}}}$ ${C_{{\rm{31}}}}{\rm{,}}{C_{{\rm{37}}}}$ ${\rm{TD}}{{\rm{M}}_{\rm{4}}}$ ${{\rm{C}}_{\rm{5}}}{\rm{,}}{{\rm{C}}_{\rm{7}}}$
${\rm{TD}}{{\rm{M}}_{\rm{2}}}$ ${C_{{\rm{40}}}}$
表 3  决策实体与通信实体的连接关系
平台实体 所连接的通信实体 平台实体 所连接的通信实体
${P_{\rm{1}}}$ ${C_{{\rm{21}}}}{\rm{,}}{C_{{\rm{22}}}}$ ${P_{{\rm{11}}}}$ ${C_{{\rm{17}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{30}}}}$
${P_{\rm{2}}}$ ${C_{\rm{9}}}{\rm{,}}{C_{{\rm{10}}}}{\rm{,}}{C_{{\rm{22}}}}$ ${P_{{\rm{12}}}}$ ${C_{\rm{3}}}{\rm{,}}{C_{{\rm{17}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{30}}}}$
${P_{\rm{3}}}$ ${C_{{\rm{11}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{32}}}}{\rm{,}}{C_{{\rm{38}}}}$ ${P_{{\rm{13}}}}$ ${C_{{\rm{17}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{30}}}}$
${P_{\rm{4}}}$ ${C_{\rm{8}}}{\rm{,}}{C_{{\rm{17}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{26}}}}$ ${P_{{\rm{14}}}}$ ${C_{{\rm{18}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{35}}}}$
${P_{\rm{5}}}$ ${C_{{\rm{17}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{23}}}}{\rm{,}}{C_{{\rm{39}}}}$ ${P_{{\rm{15}}}}$ ${C_{\rm{6}}}{\rm{,}}{C_{{\rm{12}}}}{\rm{,}}{C_{{\rm{18}}}}{\rm{,}}{C_{{\rm{22}}}}$
${P_{\rm{6}}}$ ${C_{\rm{9}}}{\rm{,}}{C_{{\rm{19}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{39}}}}$ ${P_{{\rm{16}}}}$ ${C_{\rm{6}}}{\rm{,}}{C_{\rm{9}}}{\rm{,}}{C_{{\rm{14}}}}{\rm{,}}{C_{{\rm{22}}}}$
${P_{\rm{7}}}$ ${C_{\rm{9}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{23}}}}{\rm{,}}{C_{{\rm{26}}}}$ ${P_{{\rm{17}}}}$ ${C_{{\rm{19}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{30}}}}$
${P_{\rm{8}}}$ ${C_{\rm{3}}}{\rm{,}}{C_{{\rm{17}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{30}}}}$ ${P_{{\rm{18}}}}$ ${C_{{\rm{17}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{29}}}}{\rm{,}}{C_{{\rm{39}}}}$
${P_9}$ ${C_{{\rm{10}}}}{\rm{,}}{C_{{\rm{18}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{38}}}}$ ${P_{{\rm{19}}}}$ ${C_{{\rm{21}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{27}}}}{\rm{,}}{C_{{\rm{38}}}}$
${P_{{\rm{10}}}}$ ${C_{{\rm{18}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{26}}}}{\rm{,}}{C_{{\rm{30}}}}$ ${P_{{\rm{20}}}}$ ${C_{{\rm{17}}}}{\rm{,}}{C_{{\rm{22}}}}{\rm{,}}{C_{{\rm{35}}}}$
表 4  平台实体与通信实体的连接关系
图 5  遭遇攻击前的拓扑结构
图 6  随机攻击下的算法性能
图 7  故意攻击下的算法性能
图 8  随机攻击下的实验结果随成本的变化
图 9  故意攻击下的实验结果随成本的变化
图 10  随机攻击下的算法性能对比
图 13  故意攻击下不同算法的实验结果随成本上限的变化
图 11  随机攻击下不同算法的实验结果随成本上限的变化
图 12  故意攻击下的算法性能的对比
图 14  随机攻击下不同权重系数的算法性能对比
图 15  故意攻击下不同权重系数的算法性能对比
1 LEVCGHUK G M, YU F L, PATTIPATI K R, et al. From hierarchies to heterarchies: application of network optimization to design of organization structures [C]// Command and Control Research and Technology Symposium. Monterey: Dodccrp, 2003: 1-11.
2 PARK C, PATTIPATI K R, AN W, et al Quantifying the impact of information and organizational structures via distributed auction algorithm: point-to-point communication structure[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42 (1): 68- 85
doi: 10.1109/TSMCA.2011.2157139
3 JIANG Y, WANG Y B. Analysis of attack and defense strategies on complex networks[C]// International Conference on Sensor Network Security Technology and Privacy Communication System. Harbin: IEEE, 2013: 58-62.
4 TORLEIV M, RANDALL L Network centric military communications[J]. IEEE Communications Magazine, 2006, 46 (11): 36
5 CHI L P, YANG C B, CAI X Stability of random networks under evolution of attack and repair[J]. Chinese Physics Letters, 2006, 23 (1): 263- 266
doi: 10.1088/0256-307X/23/1/076
6 缪志敏, 丁力, 赵陆文, 等 基于拓扑信息的网络修复[J]. 计算机工程, 2008, 34 (5): 25- 27
MIAO Zhi-min, DING Li, ZHAO Lu-wen, et al Network restoration based on topological information[J]. Computer Engineering, 2008, 34 (5): 25- 27
doi: 10.3778/j.issn.1002-8331.2008.05.007
7 胡斌, 黎放 多种攻击策略下无标度网络修复策略[J]. 系统工程与电子技术, 2010, 32 (1): 43- 47
HU Bin, LI Fang Repair strategies of scale-free networks under multifold attack strategies[J]. Systems Engineering and Electronics, 2010, 32 (1): 43- 47
8 蒋勇, 赵作鹏, 吴荣华 多属性加权模糊贝叶斯的复杂网络故障自修复技术[J]. 计算机应用研究, 2015, 32 (8): 2378- 2381
JIANG Yong, ZHAO Zuo-peng, WU Rong-hua Complex network fault self-repair mechanism with multi-attribute weighted fuzzy Bayesian[J]. Application Research of Computers, 2015, 32 (8): 2378- 2381
doi: 10.3969/j.issn.1001-3695.2015.08.033
9 王甲生, 吴晓平, 陈泽茂, 等 修复策略下典型拓扑结构复杂网络抗毁性研究[J]. 海军工程大学学报, 2015, 27 (4): 75- 79
WANG Jia-sheng, WU Xiao-ping, CHEN Ze-mao, et al Invulnerability analysis of complex networks with typical topologies by repair strategies[J]. Journal of Naval University of Engineering, 2015, 27 (4): 75- 79
10 GHOSH A, BOYD A. Growing well-connected graphs [C]// 45th IEEE Conference on Decision and Control. San Diego: IEEE, 2006, 7(14): 593-599.
11 KIM Y Bisection algorithm of increasing algebraic connectivity by adding an edge[J]. IEEE Transactions on Automatic Control, 2010, 55 (1): 170- 174
doi: 10.1109/TAC.2009.2033763
12 CHEN P Y, HERO A Assessing and safeguarding network resilience to nodal attacks[J]. Communications Magazine IEEE, 2014, 52 (11): 138- 143
doi: 10.1109/MCOM.2014.6957154
13 JIANG Z Y, LIANG M G, GUO D C Enhancing network performance by edge addition[J]. International Journal of Modern Physics C, 2011, 22 (11): 1211- 1226
doi: 10.1142/S0129183111016841
14 CAO X B, HONG C, WU W B, et al Improving the network robustness against cascading failures by adding links[J]. Chaos, Solitons and Fractals, 2013, 57 (4): 35- 40
15 SHI C, PENG Y, ZHUO Y, et al A new way to improve the robustness of complex communication networks by allocating redundancy links[J]. Physica Scripta, 2012, 85 (3): 035803
doi: 10.1088/0031-8949/85/03/035803
16 ZHUO Y, PENG Y, LIU C, et al Improving the attack tolerance of scale-free networks by adding and hiding edges[J]. Physica Scripta, 2011, 83 (2): 025801
doi: 10.1088/0031-8949/83/02/025801
17 ZHAO K, KUMAR A, YEN J Achieving high robustness in supply distribution networks by rewiring[J]. IEEE Transactions on Engineering Management, 2011, 58 (2): 347- 362
doi: 10.1109/TEM.2010.2095503
18 DENG Y, WU J, TAN Y J Optimal attack strategy of complex networks based on tabu search[J]. Physica A, 2016, 442: 74- 81
doi: 10.1016/j.physa.2015.08.043
19 谭跃进, 吴俊, 邓宏钟 复杂网络抗毁性研究进展[J]. 上海理工大学学报, 2011, 33 (6): 653- 668
TAN Yue-jin, WU Jun, DENG Hong-zhong Progress in invulnerability of complex networks[J]. Journal of University of Shanghai for Science and Technology, 2011, 33 (6): 653- 668
doi: 10.3969/j.issn.1007-6735.2011.06.022
20 杨志才, 裘杭萍, 雷智朋, 等 军事通信网抗毁性研究[J]. 军事通信技术, 2014, 35 (1): 31- 36
YANG Zhi-cai, QIU hang-ping, LEI Zhi-peng, et al Survivability studies for military communication network[J]. Journal of Military Communications Technology, 2014, 35 (1): 31- 36
21 LEVCHUK G M, LEVCHUK Y N, MEIRINA C, et al Normative design of organizations-part III: modeling congruent, robust, and adaptive organizations[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34 (3): 337- 350
doi: 10.1109/TSMCA.2003.822268
22 周漩, 杨帆, 张凤鸣, 等 复杂网络系统拓扑连接优化控制方法[J]. 物理学报, 2013, 62 (15): 150201
ZHOU Xuan, YANG Fan, ZHANG Feng-ming, et al Control method for complex network topological connection optimization[J]. Acta Physica Sinica, 2013, 62 (15): 150201
23 KARABOGA D. An idea based on honey bee swarm for numerical optimization [R]. Kayseri: Erciyes University, 2005.
24 KARABOGA D, AKAY B. Artificial bee colony algorithm on training artificial neural networks [C]// Signal Processing and Communications Applications. Eskisehir: IEEE, 2007: 1-4.
25 OZTURK C, KARABOGA D, GORKEMLI B Artificial bee colony algorithm for dynamic deployment of wireless sensor networks[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2012, 20 (2): 255- 262
26 ZHONG Y W, LIN J, WANG L J, et al Hybrid discrete artificial bee colony algorithm with threshold acceptance criterion for traveling salesman problem[J]. Information Sciences, 2017, 421: 70- 84
doi: 10.1016/j.ins.2017.08.067
27 LI X T, MA S J Multiobjective discrete artificial bee colony algorithm for multiobjective permutation flow shop scheduling problem with sequence dependent setup times[J]. IEEE Transactions on Engineering Management, 2017, 64 (2): 149- 165
28 OZKAN O, TURGAY B, TOLGAN O, et al Optimum assembly sequence planning system using discrete artificial bee colony algorithm[J]. Mathematical Problems in Engineering, 2018, (1): 1- 14
29 朱冰莲, 朱方方, 苏红宏, 等 基于逻辑运算的离散人工蜂群算法[J]. 电子学报, 2015, 43 (11): 2161- 2166
ZHU Bing-lian, ZHU Fang-fang, SU Hong-hong, et al Discrete artificial bee colony algorithm based on logic operation[J]. Acta Electronic Sinica, 2015, 43 (11): 2161- 2166
doi: 10.3969/j.issn.0372-2112.2015.11.004
30 孙昱, 姚佩阳, 申健, 等 基于信息流的军事通信网络抗毁性优化设计[J]. 华中科技大学学报: 自然科学版, 2016, 44 (12): 114- 120
SUN Yu, YAO Pei-yang, SHEN Jian, et al Military communication network design for invulnerability optimization based on information flow[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2016, 44 (12): 114- 120
[1] 万志远, 周波. 基于静态信息流跟踪的输入验证漏洞检测方法[J]. 浙江大学学报(工学版), 2015, 49(4): 683-691.
[2] 姜励 平玲娣 陈小平 潘雪增 李善平. 概率系统的非传递无干扰安全属性分析[J]. J4, 2008, 42(12): 2092-2096.