Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2226-2232    DOI: 10.3785/j.issn.1008-973X.2018.11.022
电子与通信工程     
基于FPGA的新边缘指导插值算法硬件实现
吴世豪, 罗小华, 张建炜, 谈智涛
浙江大学 信息与电子工程学院, 浙江 杭州 310027
FPGA-based hardware implementation of new edge-directed interpolation algorithm
WU Shi-hao, LUO Xiao-hua, ZHANG Jian-wei, TAN Zhi-tao
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(952 KB)   HTML
摘要:

针对图像超分辨率算法中新边缘指导插值算法(NEDI)计算复杂度较高、软件计算时间较长的问题,提出基于Cholesky分解的可扩展NEDI算法硬件设计方案.采用Cholesky分解方法简化NEDI算法中复杂的矩阵求逆运算,采用Goldschmidt算法设计低延时定点数除法器加速矩阵求逆运算,使用多周期计算方法隐藏数据相关性带来的数据等待时间并减少硬件资源使用.为了减少硬件资源的消耗,根据NEDI算法在不同大小窗口下核心计算部分的不变性,使用固定资源设计可扩展算法核心电路,采用可变资源设计扩展电路,在FPGA上实现该电路设计.实验结果表明,可扩展NEDI算法硬件的关键路径延时为7.007 ns,工作频率大于100 MHz.与使用PC端软件计算的结果相比,可扩展NEDI算法硬件电路计算结果的误差为0.1%,计算速度是使用PC端软件计算的51倍.

Abstract:

A scalable hardware implementation of new edge-directed interpolation (NEDI) algorithm based on the Cholesky decomposition algorithm was proposed to reduce the complexity of the matrix computation and the long time consumption of the calculation of NEDI algorithm. NEDI algorithm is one of the image super-resolution algorithms. The Cholesky decomposition algorithm was used to simplify the matrix inversion and a low latency fixed-point divider based on the Goldschmidt algorithm was designed to accelerate the progress of the matrix inversion. Multicycle computation was used to leverage the time cost of waiting data and to reduce the resoure utilization of hardware. According to the invariance of core calculation in NEDI algorithm under different conditions, a core circuit was designed using fixed resources, and a corresponding expansion circuit was designed using variable resources to reduce the hardware resource usage. The circuit design was implemented based on field programmable gate array (FPGA). The experimental results indicated that the time delay on critical path was 7.007 ns and the system frequency of the designed hardware was greater than 100 MHz. The results computed by the scalable NEDI hardware circuit had a maximum offset of 0.1% and the calculation speed was 51 times faster than that of the software on PC.

收稿日期: 2017-12-01 出版日期: 2018-11-22
CLC:  TN47  
基金资助:

浙江省自然科学基金资助项目(LY15F040001)

通讯作者: 罗小华,男,副教授.orcid.org/0000-0002-2807-2386.     E-mail: luoxh@vlsi.zju.edu.cn
作者简介: 吴世豪(1994-),男,硕士生,从事超大规模集成电路研究.orcid.org/0000-0001-7448-1490.E-mail:21631051@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

吴世豪, 罗小华, 张建炜, 谈智涛. 基于FPGA的新边缘指导插值算法硬件实现[J]. 浙江大学学报(工学版), 2018, 52(11): 2226-2232.

WU Shi-hao, LUO Xiao-hua, ZHANG Jian-wei, TAN Zhi-tao. FPGA-based hardware implementation of new edge-directed interpolation algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2226-2232.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.022        http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2226

[1] AKHTAR P, AZHAR F. A single image interpolation scheme for enhanced super resolution in bio-medical imaging[C]//International Conference on Bioinformatics and Biomedical Engineering. Chengdu:IEEE, 2010:1-5.
[2] PARK S C, MIN K P, KANG M G. Super-resolution image reconstruction:a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36.
[3] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2010, 19(11):2861-2873.
[4] GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//12th International Conference on Computer Vision. Kyoto:IEEE, 2009:349-356.
[5] TAI Y W, LIU S, BROWN M S, et al. Super resolution using edge prior and single image detail synthesis[C]//Conference on Computer Vision and Pattern Recognition. San Francisco:IEEE, 2010:2400-2407.
[6] BAKER S, KANADE T. Limits on super-resolution and how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9):1167-1183.
[7] CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]//Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE, 2004:275-282
[8] DONG C, CHEN C L, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision. Zurich:ECCV, 2014:184-199.
[9] PROTTER M, ELAD M, TAKEDA H, et al. Generalizing the nonlocal-means to super-resolution reconstruction[J]. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society, 2009, 18(1):36-51.
[10] KIM K I, KWON Y. Single-image super-resolution using sparse regression and natural image prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6):1127.
[11] 邓亚斌, 陈立, 方志宏, 等. 基于FPGA的图像超分辨率算法的实现[J]. 电视技术, 2015, 39(23):5-8 DENG Ya-bin, CHEN Li, FANG Zhi-hong, et al. FPGA implementation of LSE scale algorithm[J]. Video Engineering, 2015, 39(23):5-8
[12] 钟雪燕, 夏前亮, 陈智军. 基于FPGA的图像超分辨率的硬件化实现[J]. 现代电子技术, 2017, 40(17):44-46 ZHONG Xue-yan, XIA Qian-liang, CHEN Zhi-jun. FPGA-based hardware implementation of image super-resolution[J]. Modern Electronics Technique, 2017, 40(17):44-46
[13] NUNO-MAGANDA M A, ARIAS-ESTRADA M O. Real-time FPGA-based architecture for bicubic interpolation:an application for digital image scaling[C]//International Conference on Reconfigurable Computing and FPGAs. Puebla:IEEE, 2005:1-8.
[14] LI X, ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2001, 10(10):1521.
[15] GOLDSCHMIDT R E. Applications of division by convergence[D]. Boston:Massachusetts Institute of Technology, 1964:7-14.
[16] ANDERSON S F, EARLE J G, GOLDSCHMIDT R E, et al. The IBM system/360 model 91:floating-point execution unit[J]. IBM Journal of Research and Development, 1967, 11(1):34-53.

[1] 刘士兴, 范对鹏, 程龙, 王世超, 丁力, 易茂祥. 静态随机存储器双向互锁存储单元的抗老化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1453-1461.
[2] 蓝帆, 潘赟, 严晓浪, 宦若虹, CHENG Kwang-ting. 用于容错片上网络的可工作性评估框架[J]. 浙江大学学报(工学版), 2017, 51(7): 1437-1445.
[3] 孟建熠, 严晓浪, 葛海通. 基于指令回收的低功耗循环分支折合技术[J]. J4, 2010, 44(4): 632-638.