Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (6): 1068-1072    DOI: 10.3785/j.issn.1008-973X.2018.06.004
计算机与通信技术     
基于共源共栅反相器的极低功耗Sigma-Delta调制器设计
陈铖颖, 陈黎明, 黄新栋, 张宏怡
厦门理工学院 微电子学院, 福建 厦门, 361024
Design of extremely low power sigma-delta modulator based on cascode inverter
CHEN Cheng-ying, CHEN Li-ming, HUANG Xin-dong, ZHANG Hong-yi
School of Microelectronics, Xiamen University of Technology, Fujian 361024, China
 全文: PDF(2327 KB)   HTML
摘要:

为了满足穿戴式医疗设备中低功耗、高精度的模数转换应用需求,设计一种基于共源共栅反相器的低功耗14 bit/500 Hz Sigma-Delta调制器电路.在低电源电压环境下,该电路采用栅压自举开关完成了高精度的信号采样.利用共源共栅反相器替换传统Sigma-Delta调制器的跨导放大器(DTA),有效降低了电路功耗.电路采用SMIC 0.13 μm 1P8M 混合信号工艺实现,测试结果表明,在供电电压为0.6 V、时钟频率为256 kHz、信号带宽为500 Hz内,Sigma-Delta调制器输出信号最大信噪失真比为69.7 dB,有效精度为11.3 bit,功耗仅为5.07 μW.

Abstract:

A 14 bit/500 Hz Sigma-Delta modulator was presented based on cascode inverter to meet the low power, high resolution application requirement of wearable medical device. In low power supply, the bootstrap switch was adopted to complete accurate signal sampling. And instead of using a transconductor operational amplifier (OTA), the Sigma-Delta modulator was constituted with cascode inverter to reduce power consumption. The circuit was implemented in SMIC 0.13 μm 1P8M Mixed-signal process. The measurement results show that in 0.6 V power supply with 500 Hz signal bandwidth and 256 kHz clock frequency, the maximum signal to noise and distortion ratio (SNDR) is 69.7 dB and the efficient number of bit (ENOB) is 11.3 bit with 5.07 μW power consumption.

收稿日期: 2017-01-22 出版日期: 2018-06-20
CLC:  TN432  
基金资助:

国家自然科学基金资助项目(61704143);福建省自然科学基金资助项目(2015J01671,2018J01566);福建省中青年教师教育科研资助项目(JAT170428);福建省属高校资助项目(JK2015032)厦门理工学院高层次人才资助项目(YKJ17019R).

通讯作者: 陈黎明,男,副教授.orcid.org/0000-0003-1815-238X.     E-mail: chenliminghust@126.com
作者简介: 陈铖颖(1982-),男,副教授,从事低功耗、高精度混合信号集成电路的研究和设计.orcid.org/0000-0001-5726-0709.E-mail:chenchengying363@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

陈铖颖, 陈黎明, 黄新栋, 张宏怡. 基于共源共栅反相器的极低功耗Sigma-Delta调制器设计[J]. 浙江大学学报(工学版), 2018, 52(6): 1068-1072.

CHEN Cheng-ying, CHEN Li-ming, HUANG Xin-dong, ZHANG Hong-yi. Design of extremely low power sigma-delta modulator based on cascode inverter. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1068-1072.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.06.004        http://www.zjujournals.com/eng/CN/Y2018/V52/I6/1068

[1] WANG Y C, KE K R, QIN W H, et al. A low power low noise analog front end for portable healthcare system[J]. Journal of Semiconductors, 2015, 36(10):105008-7.
[2] MAO Y Q, GAO T Q, XU X D, et al. A fully integrated CMOS super-regenerative wake-up receiver for EEG applications[J]. Journal of Semiconductors, 2016,37(9):095001-6.
[3] XIAO G L, QIN Y L, XU W L, et al. Demonstration of a fully differential VGA chip with small THD for ECG acquisition system[J]. Journal of Semiconductors, 2015, 36(10):105005-6.
[4] DUAN J H, LAN C, XU W L, et al. An OTA-C filter for ECG acquisition systems with highly linear range and less passband attenuation[J]. Journal of Semiconductors, 2015, 36(5):055006-6.
[5] DAI L, LIU W K, LU Y, et al. A 410μW, 70 dB SNR high performance analog front-end for portable audioapplication[J]. Journal of Semiconductors, 2014,35(10):105013-6.
[6] PU X F, WAN L, ZHANG H, et al. A low-power portable ECG sensor interface with dry electrodes[J]. Journal of Semiconductors, 2013, 34(5):055002-6.
[7] PUN K P, CHATTERJEE S, KINGET P. A 0.5-V 74-dB SNDR 25kHz CT Sigma-Delta modulator withreturn-to-open DAC[J]. IEEE Journal of Solid-StateCircuits, 2007, 42(3):496-507.
[8] MURMANN B, BOSER B. A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification[J]. IEEE Journal of Solid-State Circuits, 2003, 38(12):2040-2050.
[9] SIGRAGUSA E, GALTON I. A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC[J]. IEEE Journal of Solid-State Circuits, 2004, 39(12):2126-2138.
[10] FIORENZA J K, SEPKE T, HOLLOWAY P, et al. Comparator-based switch-capacitor circuits for scaled CMOS technologies[J]. IEEE Journal of Solid-State Circuits, 2006, 41(12):2658-2668.
[11] CHAE Y, HAN G. A low power sigma-delta modulator using class-C inverter[C]//2007 IEEE Symposium on Vlsi Circuits. Kyoto:IEEE, 2007:240-241.
[12] CHAE Y, LEE I, HAN G. A 0.7-V 36-μW 85dB-DR audio Sigma-Delta modulator using class-C inverter[C]//2008 IEEE Solid-State Circuits Conference. San Francisco:IEEE, 2008:490-491.
[13] CHAE Y, HAN G. Low voltage, low power, inverter-based switch-capacitor delta-sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2009,44(2):458-471.
[14] ANDREW M, GRAY P R. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter[J]. Journal of Solid-State Circuits,1999,34(5):599-603.
[15] ABIRI E, POUMOORI N. A 0.5-V 17μW second-order Delta-Sigma modulator based on a self-biased digital inverter in 0.13μm CMOS[J]. Journal of Basic and Applied Scientific Rearch, 2012,2(4):3476-3480.
[16] MICHAEL F, STEYAERT M. A 250 mV 7.5μW 61dB SNDR SC Sigma-Delta modulator using near-threshold-voltage-biased inverter amplifier in 130 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(3):709-721.
[17] YANG Y, YANG Y, LU L, et al. Inverter-based second-order Sigma-Delta modulator for smart sensor[J]. Electronics letters, 2013. 49(7):31-32.
[18] YOON Y, ROH H, ROH J. A true 0.4 V Delta-Sigma modulator using a mixed DDA integrator without clock boosted switches[J]. IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs, 2014, 61(4):229-233.

[1] 朱涛涛, 项晓燕, 陈晨, 孟建熠, 严晓浪. 面向宽电压应用的容错时钟门控单元设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1796-1803.
[2] 雷宇, 陈后鹏, 王倩, 李喜, 胡佳俊, 宋志棠. 相变存储器预充电读出方法[J]. 浙江大学学报(工学版), 2018, 52(3): 531-536.
[3] 胡晓慧, 张慧熙, 沈继忠. 基于多阈值技术的低功耗优先编码器设计[J]. J4, 2009, 43(5): 860-863.