Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (8): 1619-1625    DOI: 10.3785/j.issn.1008-973X.2017.08.018
机械与能源工程     
用于热声发电的曲柄连杆式换能器工作特性
罗凯, 孙大明, 章杰, 张宁, 王凯, 徐雅, 邹江
浙江大学 浙江省制冷与低温技术重点实验室, 浙江 杭州 310027
Operating characteristics of crank-rod transducer used in thermoacoustic power generation
LUO Kai, SUN Da-ming, ZHANG Jie, ZHANG Ning, WANG Kai, XU Ya, ZOU Jiang
Zhejiang Province Key Laboratory of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1125 KB)   HTML
摘要:

针对热声发电系统的曲柄连杆式换能器建立数学物理模型,研究不同活塞质量、转动惯量、压力振幅及负载电阻对换能器工作特性的影响规律.结果表明:由于行程固定,曲柄连杆式换能器阻抗幅值由压力振幅、频率、活塞行程及面积确定,相位角由负载电阻与输入压力振幅共同决定.当输入振幅0.2 MPa、频率65 Hz的压力波,负载电阻为110 Ω时,换能器的阻抗实部为1.244×107 Pa·s/m3,虚部为-1.209×107 Pa·s/m3,可输出电功为680.1 W,声电效率约为82.2%.

Abstract:

A mathematical-physical model of crank-rod transducer (CRT) used in thermoacoustic power generation system (TAGS) was developed. The effects of design parameters (such as piston weight, rotational inertia, pressure amplitude and electrical load) on the working performance of the CRT were analyzed. Due to its fixed stroke, the impedance amplitude of CRT is determined by the pressure amplitude, frequency, stoke and area of piston, while the phase angle is decided both by driving pressure amplitude and electrical resistance. When the driving pressure has an amplitude of 0.2 MPa, frequency of 65 Hz, with an electrical load of 110 Ω, the real part of CRT impedance is 1.244×107 Pa·s/m3, the imaginary part is -1.209×107 Pa·s/m3,outputting 680.1 W electrical power with an acoustic-electrical efficiency of 82.2%.

收稿日期: 2016-08-25 出版日期: 2017-08-16
CLC:  TM61  
基金资助:

自然科学基金资助项目(51476136);中国博士后科学基金资助项目(2013M541772).

通讯作者: 孙大明,男,副教授.ORCID:0000-0002-1944-9807.     E-mail: sundaming@zju.edu.cn
作者简介: 罗凯(1993-),男,硕士生,从事斯特林型热声热机方向等研究.ORCID:0000-0003-1015-5244,E-mail:lkai@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

罗凯, 孙大明, 章杰, 张宁, 王凯, 徐雅, 邹江. 用于热声发电的曲柄连杆式换能器工作特性[J]. 浙江大学学报(工学版), 2017, 51(8): 1619-1625.

LUO Kai, SUN Da-ming, ZHANG Jie, ZHANG Ning, WANG Kai, XU Ya, ZOU Jiang. Operating characteristics of crank-rod transducer used in thermoacoustic power generation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(8): 1619-1625.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.08.018        http://www.zjujournals.com/eng/CN/Y2017/V51/I8/1619

[1] BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine[J]. Nature, 1999, 399(6734):335-338.
[2] SUN D M, WANG K, XU Y, et al. Thermoacoustic compression based on alternating to direct gas flow conversion[J]. Journal of Applied Physics, 2012, 111(9):094905-094905-5.
[3] YU Z, JAWORSKI A J, BACKHAUS S. Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy[J]. Applied Energy, 2012, 99:135-145.
[4] ZHAO Y, YANG Z, LUO E C, et al. Travelling-wave thermoacoustic hightemperature heat pump for industrial waste heat recovery[J]. Energy, 2014, 77:397-402.
[5] TIJANI M E H, SPOELSTRA S. A high performance thermoacoustic engine[J]. Journal of Applied Physics, 2011, 110(9):093519.
[6] 周龙保.内燃机学[M].北京:机械工业出版社,2011.03:28-32.
[7] KEES D B. Novel 4-stage traveling wave thermoacoustic power generator[C]//ASME 20103rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. Montreal:American Society of Mechanical Engineers, 2010:73-79.
[8] KEES D B, SYSTEMEN A T. Multi-stage traveling wave thermoacoustics in practice[C]//19th International Congress on Sound and Vibration, Vilnius:ICSV, 2012:1573-1580.
[9] WU Z H, MAN M, LUO E C, et al. Experimental investigation of a 500 W traveling-wave thermoacoustic electricity generator[J]. Chinese Science Bulletin, 2011, 56(19):1975-7.
[10] SUN D M, WANG K, ZHANG X J, et al. A traveling-wave thermoacoustic electric generator with a variable electric R-C load[J]. Applied Energy, 2013, 106:377-82.
[11] WU Z, ZHANG L, DAI W, et al. Investigation on a 1kW traveling-wave thermoacoustic electrical generator[J]. Applied Energy, 2014, 124:140-147.
[12] WANG K, SUN D, ZHANG J, et al. Operating characteristics and performance improvements of a 500W traveling-wave thermoacoustic electric generator[J]. Applied Energy, 2015, 160:853-862.
[13] WANG K, SUN D, ZHANG N, et al. An acoustically matched traveling-wave thermoacoustic generator achieving 750 W electric power[J]. Energy, 2016, 103:313-321.
[14] WANG Y, LI Z, LI Q. A novel method for improving the performance of thermoacoustic electric generator without resonator[J]. Energy Conversion and Management, 2016, 110:135-141.
[15] JENSEN C, RASPET R. Thermoacoustic power conversion using a piezoelectric transducer[J]. The Journal of the Acoustical Society of America, 2010, 128(1):98-103.
[16] KANG H, CHENG P, YU Z, et al. A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators[J]. Applied Energy, 2015, 137:9-17.
[17] 金东寒.斯特林发动机技术[M].哈尔滨:哈尔滨工程大学出版社,2009.09:30-38.
[18] 邹降清.斯特林发动机[M].长沙:湖南大学出版社,1985.11:38-40.
[19] MOLDENHAUER S, THESS A, HOLTMANN C, et al. Thermodynamic analysis of a pulse tube engine[J]. Energy Conversion and Management, 2013, 65:810-818.
[20] MOLDENHAUER S, HOLTMANN C, STARK T, et al. Theoretical and Experimental Investigations of the Pulse Tube Engine[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(3):534-541.
[21] CHENG C H, YANG H S, JHOU B Y, et al. Dynamic simulation of thermal-lag Stirling engines[J]. Applied Energy, 2013, 108:466-476.
[22] CHENG C H, YANG H S. Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine[J]. Energy, 2013, 49:218-228.
[23] 孙大明,赵益涛,王凯,等.热声发电系统中直线发电机工作特性研究[J].工程热物理学报,2013,34(7):1225-1228. SUN D M, ZHAO Y T, WANG K, et al. Study on the working characteristics of linear alternator in thermoacoustic power generation system[J]. Journal of Engineering Thermophysics, 2013,34(7):1225-1228.
[24] WANG K, SUN D, ZHANG J, et al. Beating effect between a thermoacoustic source and its mechanical partner[J]. Journal of Applied Physics, 2015, 118(24):244907.
[25] 王凯.行波热声发电系统热-声-电耦合及转换机理研究[D].杭州:浙江大学, 2014. WANG K, Thermal-acoustic-electrical coupling and conversion mechanisms of a traveling-wave thermoacoustic power generation system[D]. Hangzhou:Zhejiang University, 2014.
[26] 杜功焕.声学基础[M].2版,南京:南京大学出版社,2001.03:116-162.
[27] 奚碚华,付中泽,潘龙飞,刘春和.直流永磁电机的动态特性[J].中国惯性技术学报,2006, 14(4):59-66. Dynamic characteristics of permanent-magnet DC motors[J]. Journal of Chinese Inertial Technology, 2006, 14(4):59-66.

[1] 周涛, 何炎平, 孟龙, 赵永生. 新型6 MW单柱浮式风力机耦合运动分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1864-1873.