Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
非饱和多孔岩石的热力学本构理论
胡亚元
浙江大学 滨海和城市岩土工程研究中心 浙江 杭州 310027
Thermodynamics-based constitutive theory for unsaturated porous rock
HU Ya yuan
Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, 310058, China
 全文: PDF(1176 KB)   HTML
摘要:

为了在本构模型中同时考虑岩石材料和多孔岩石的非线性和不可逆变形,提出非饱和多孔岩石工程力学理论.应用体积分数概念和混合物理论,凭借均匀化响应原理,获得由孔隙应变张量、饱和度和各组分材料体应变5个状态变量表示的能量平衡方程.利用自由能确定的5个弹性方程,加上体积分数之和等于1这个方程组成6个本构方程.根据这些方程可以求解非饱和岩石本构模型的全部6个未知变量(3个位移矢量和3个体积分数).根据不可逆热力学理论,基于熵产公式提出用内变量表示的耗散率势函数,获得能够反映黏性和塑性不可逆变形特性的耗散本构方程.结果表明,自由能和耗散率2个势函数分别反映了岩石弹性和非弹性变形规律,共同构成了非饱和多孔岩石的热力学本构理论框架.

Abstract:

An engineering mechanics of unsaturated porous rock was proposed in order to consider the nonlinear and irreversible deformations of both rock material and porous rock. Firstly, with using the volume fraction concept and mixture theory, the equation of energy balance in terms of five state variables was obtained in virtue of the mixture homogenous response principle, which were called void strain tensor, degree of saturation and the material volume strain of each constituent. The five elastic equations which were determined by free energy and the one equation that the sum of all volume fractions was equal to unity compose six constitutive equations. Based on these equations, all six unknown variables (three displace vectors and three volume fractions) could be solved in the constitutive model of unsaturated rock. Secondly, according to the irreversible thermodynamics, the potential of dissipative rate in terms of internal variables was proposed on the basis of entropy production formula. Thus, the dissipative constitutive equations were derived to describe the irreversible deformation behaviors such as viscosity or plasticity. Results show that, the two potential functions of free energy and dissipative rate can depict the discipline of elastic and inelastic deformations, respectively, which both form the constitutive theoretical framework of unsaturated porous rock.

出版日期: 2017-03-06
CLC:  TU 47  
基金资助:

国家自然科学基金资助项目(51178419).

作者简介: 胡亚元(1968—),男,副教授,从事地基处理和土的本构关系等研究.ORCID:0000-0002-5422-7679. E-mail: huyayuan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

胡亚元. 非饱和多孔岩石的热力学本构理论[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.02.005.

HU Ya yuan. Thermodynamics-based constitutive theory for unsaturated porous rock. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.02.005.

[1] LI X S. Thermodynamicsbased constitutive framework for unsaturated soils[J]. Géotechnique, 2007, 57(5): 411-422.
[2] 缪林昌.非饱和土的本构模型研究[J].岩土力学,2007,28(5): 855-860.
MIAO Linchang. Research of constitutive model of unsaturated soils [J]. Rock and Soil Mechanics, 2007, 28(5): 855-860.
[3] 孙德安,高游.不同制样方法非饱和土的持水特性研究[J].岩土工程学报,2015,37(1): 91-97.
SUN Dean, GAO You. Water retention behaviour of soils with different preparations [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 9197.
[4] MA T T, WEI C F, WEI H Z, et al. Hydraulic and mechanical behavior of unsaturated silt: experimental and theoretical characterization [J]. International Journal of Geomechanics, 2015, D40150071D401500713.
[5] 胡亚元.考虑吸附水的非饱和土耗散本构关系研究[J].岩土力学,2015,36(S1): 14-18.
HU Yayuan, Study on the dissipative constitutive relation of unsaturated soil considering adsorbed water[J]. Rock and Soil Mechanics, 2015,36(S1): 1418.
[6] 韩同春,豆红强,马世国,等.考虑雨水重分布对均质无限长边坡稳定性的研究[J].浙江大学学报:工学版,2013,47(10): 1824-1829.
HAN Tong chun, DOU Hong qiang, MA Shiguo, et al. Rainwater redistribution on stability of homogen ous infinite slop[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (10): 1824-1829.
[7] 周创兵,陈益峰,姜清辉,等.复杂岩体多场广义耦合分析导论[M].北京,中国水利水电出版社,2008: 152187; 328-363.
[8] 赵阳升.多孔介质多场耦合作用及其工程响应[M].北京,科学出版社,2010: 171310.
[9] SKEMPTON A W. Effective stress in soils, concrete and rocks[M]. London, UK: Butterwoths, 1961: 416.
[10] SUKLJE L. Rheological aspects of soil mechanics [M]. Interscience, New York, 1969: 123.
[11] DE BUHAM P, DORMIEUX L. On the validity of the effective stress concept for assessing the strength of saturated porous materials: A homogenization approach[J]. Journal of the Mechanics and Physics of Solids,1996, 44(10): 1649-1667.
[12] WALSH J, BROWN S, DURHAM W. Effective media theory with spatial correlation for flow in fracture[J]. Journal. Geophysical Resiews, 1997,102 (B10): 22587-22594.
[13]  CARIOU S, DUAN Z, DAVY C, et al. Poromechanics of partially saturated COx argillite [J]. Applied Clay Science, 2012,56: 36-47.
[14] 陈正汉.非饱和土与特殊土力学的基本理论研究[J].岩土工程学报,2014, 36(2): 201-272.
CHEN Zhenghan. On basic theories of unsaturated soils and special soils [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272.
[15] BORJA R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua[J].International Journal of Solids and Structures, 2006, 43: 1764-1786.
[16] BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39): 113-143.
[17] 陈卫忠,谭贤君,伍国军,等.非饱和岩石温度渗流应力耦合模型研究\[J\].岩石力学与工程学报,2007, 26(12): 2395-2403.
CHEN Wei zhong, TAN Xian jun, WU Guo jun,et al. Study on thermo-hydro-mechanical coupling model for unsaturated rock \[J\]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (12): 2395-2403.
[18] 赵成刚,刘艳.连续孔隙介质土力学及其在非饱和土本构关系中的应用\[J\].岩土工程学报,2009,31(9):1324-1335.
ZHAO ChengGang, LIU Yan. Continuum porous medium soil mechanics and its application in constitutive relationship of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1324-1335.
[19] BOWEN R M 著,徐慧己,张志新,李如庆等译.混合物理论[M].南京:江苏科学技术出版社,1983: 148.
[20] GEERTSMA J. The effect of fluid pressure decline on volumetric changes of porous rocks[J]. Petroleum Transactions, 1957, 210: 331-339.
[21] 李如生,非平衡态热力学和耗散结构.北京:清华大学出版社,1986, 76-106.
[22] BOIT, M.A. Theory of stressstrain relations in anisotropic viscoelasticity and relaxation phenomena [J]. Journal of Applied Physics,1954, 25,1385-1391.
[23] HOULSBY G T, PUZRIN A M. Rate-dependent plasticity models derived from potential functions[J]. Journal of Rheology, 2002, 46(1): 113-126.
[24] HILL R. The mathematical theory of plasticity \[M\]. \[S.l.\]: Oxford University Press, 1950, 50-52.

[1] 余松霖,柯瀚,詹良通,孟涛,陈云敏,杨策. 工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析[J]. 浙江大学学报(工学版), 2020, 54(12): 2364-2376.
[2] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[3] 肖偲,王奎华,王孟波. 基于桩侧虚土桩模型的桩-桩芯土竖向动力响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1593-1603.
[4] 吴君涛,王奎华,刘鑫,孙梵. 基于既有桩基振动理论反演的桩周土动态响应解[J]. 浙江大学学报(工学版), 2020, 54(3): 521-528.
[5] 赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.
[6] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[7] 唐德琪,俞峰,黄祥国,陈海兵,夏唐代. 开挖诱发坑内既有基桩附加内力的模型试验[J]. 浙江大学学报(工学版), 2019, 53(8): 1457-1466.
[8] 焦卫国,詹良通,季永新,贺明卫. 含非饱和导排层的毛细阻滞覆盖层长期性能分析[J]. 浙江大学学报(工学版), 2019, 53(6): 1101-1109.
[9] 余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.
[10] 郑凌逶, 谢新宇, 谢康和, 李金柱, 刘亦民. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073.
[11] 项国圣, 方圆, 徐永福. 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 931-936.
[12] 邹圣锋, 李金柱, 王忠瑾, 兰璐, 王文军, 谢新宇. 基于GDS渗透仪的渗透试验及经验模型[J]. 浙江大学学报(工学版), 2017, 51(5): 856-862.
[13] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[14] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[15] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.