Please wait a minute...
浙江大学学报(工学版)
能源工程     
倾斜螺旋片强化的套管换热器数值模拟
董永申, 王定标, 向飒, 夏春杰
郑州大学 化工与能源学院,河南 郑州 450001
Numerical simulation of double-pipe heat exchanger enhanced by oblique helical fins
DONG Yong-shen, WANG Ding-biao, XIANG Sa, XIA Chun-jie
School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
 全文: PDF(1338 KB)   HTML
摘要:

为了减小螺旋片强化的套管换热器的摩擦阻力系数f,提出倾斜螺旋片强化的方法.基于RNG k-ε模型对倾斜螺旋片强化的套管换热器进行模拟;将Re=2 362~16 860的螺旋升角α=35°,螺旋片倾斜角β=5°、10°、15°时的传热性能与光滑管以及α=35°的普通螺旋片强化管的传热性能进行对比;考察f、Nu和综合传热性能PEC值的变化规律;并运用火积耗散理论对传热性能进行分析.结果表明:模拟结果与实验结果吻合较好,证明模拟方法是可行的;普通螺旋片和倾斜螺旋片均有强化传热的作用,与普通螺旋片相比,倾斜螺旋片能够有效地减小f,且对f的减小程度随着β的增大呈现先增大后减小的趋势,分别减小了1.7%~3.3%、12.5%~14.5%和6.3%~7.8%;Nu随着β的增大呈现先减小后增大的趋势,但变化不大;倾斜螺旋片的PEC值均高于普通螺旋片,当β=10°时PEC值最高,相对于普通螺旋片的1.26~1.62,增大到1.38~1.71;采用倾斜螺旋片强化的火积耗散率均低于采用普通螺旋片强化的火积耗散率,当β=10°时,火积耗散率最小,与等泵功条件下所得出的结论吻合.

Abstract:

Oblique helical fins was proposed to reduce f , the frictional Resistance coefficient, of double-pipe heat exchanger enhanced by helical fins, and RNG k-e epsilon model was used to simulate double-pipe heat exchanger enhanced by oblique helical fins. With Re, the Reynolds number, varying from 2 362 to 16 860, the heat transfer performance of double-pipe heat exchanger whose α, the helix angle, equals 35° and β, the oblique angle of helical fins, equals 5°,10° and 15° was compared with that of smooth double-pipe heat exchanger and double-pipe heat exchanger enhanced by ordinary helical fins whose α equals 35°, and the change rule of f , Nu and PEC , the comprehensive heat transfer performance with the same pump power, were analyzed. Also, the entransy dissipation theory was used to analyze the heat transfer performance. Results show that the ordinary helical fins , whose β equals 0, and oblique helical fins both have the effect of enhancement. Compared with ordinary helical fins , oblique helical fins can effectively decrease f , and its degree of decrease on f decreases after increasing with the increase of β, respectively a reduce of 1.7%-3.3%, 12.5%-14.5% and 6.3%-7.8%. Nu firstly decreases then increases with the increase of β, but the change is not big. The PEC values of oblique helical fins are higher than that of ordinary helical fins. When β equals 10 °, PEC, relative to ordinary helical fins , increases to 1.38-1.71 from 1.26-1.62. The entransy dissipation rate of oblique helical fins is lower than that of ordinary helical fins, and the entransy dissipation rate is the lowest when β equals 10 °,which is identical with the conclusion obtained with the same pump power.

出版日期: 2015-02-01
:  TK 172  
基金资助:

河南省科技创新杰出青年人才计划资助项目(124100510020)

通讯作者: 王定标,男,教授     E-mail: wangdb@zzu.edu.cn
作者简介: 董永申(1991—),男,硕士生,从事工业节能技术与装备的研究与开发.E-mail: dongyongshen1991@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

董永申, 王定标, 向飒, 夏春杰. 倾斜螺旋片强化的套管换热器数值模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.02.017.

DONG Yong-shen, WANG Ding-biao, XIANG Sa, XIA Chun-jie. Numerical simulation of double-pipe heat exchanger enhanced by oblique helical fins. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.02.017.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.02.017        http://www.zjujournals.com/eng/CN/Y2015/V49/I2/309

[1]柯如柏.气体传热强化方法的实验及分析一兼论套管式换热器[J].制冷,1989,10(4): 48.
KE Ru-bai.Experiment and analysis of gas heat transfer reinforcement method and theory of casing heat exchanger [J].Journal of Refrigeration,1989,10(4): 48.
[2] ZHANG L,GUO H M,WU J H. et al.Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators [J].Heat Mass Transfer,2012,48(7): 1113-1124.
[3]朱登亮,吴金星,魏新利,等.螺旋折流片强化换热器壳程传热数值分析.化工进展,2006,25(增刊): 392-396.
ZHU Deng-liang,WU Jin-xing,WEI Xin-li,et al. Numerical analyses on enhanced heat transfer of the helical baffle strip in the shell side of the heat exchange[J]. Chemical Industry and Engineering Progress,2006,25(supplement): 392-396.
[4] 张丽,田密密,吴剑华.螺旋片强化的套管式换热器壳侧传热特性[J].高等化学工程学报,2011,25(1): 24-29.
ZHANG Li,TIAN Mi-mi,WU Jian-hua, et al .Transfer performance of the shell side of double-Pipe heat exchanger enhanced with helical fins [J]. Journal of Chemical Engineering of Chinese Universities,2011,25(1): 24-29.
[5] 张丽.螺旋片强化的套管换热器壳侧流体流动及复合强化传热[D].天津:天津大学,2011.
ZHANG Li. Fluid flow and compound heat transfer enhancement for shell side of double-Pipe heat exchanger enhanced by helical fins [D].Tianjin: Tianjin University, 2011.
[6] SHOU S, CHIHNG T L, ANTHONY C K.Heat transfer coefficients of double pipe heat exchanger with helical type roughened surface [J].Heat Recovery Systems and CHP,1987,7(2): 119-127.
[7] ZHANG L,DU W J, WU J H,et al. Fluid flow characteristics for shell side of double-pipe heat exchanger with helical fins and pin fins [J].Experimental Thermal and Fluid Science,2012,36(1): 30-43.
[8]王定标,王宏斌,梁珍祥. 扭曲三叶管传热与流阻性能的数值研究[J].化工学报,2012,63(7): 2064-2069.
WANG Ding-biao,WANG Hong-bin,LIANG Zhen-xiang.Numerical research on heat transfer and flow resistance performance of twisted trifoliate tube [J].Journal of Chemical Industry and Engineering,2012,63(7): 2064-2069.
[9] 王定标,向飒,董其伍,等.纵流壳程换热器的三维流场[J].化工学报,2004,55(5): 699-703.
WANG Ding-biao ,XIANG Sa, DONG Qi-wu,et al.Flow field in heat exchanger wit h longitudinal flow of shell side fluid [J].Journal of Chemical Industry and Engineering, 2004 , 55 (5) : 699-703.
[10] 吴金星,董其伍,刘敏珊,等. 折流杆换热器壳程湍流和传热的数值模拟[J].高校化学工程学报,2006,20(2): 213-216.
WU Jin-xing,DONG Qi-wu,LIU Min-shan,et al. Numerical simulation on the turbulent flow and heat transfer in the shell side of the rod baffle heat exchanger [J].Journal of Chemical Engineering of Chinese Universities,2006,20(2): 213-216.
[11] 黄德斌,邓先和,邢华伟. 异形管内水力、传热性能的数值模拟[J].高校化学工程学报,2003, 17(2): 146-150.
HUANG De-bin ,DENG Xian-he , XING Hua-wei. Numerical study on hydrodynamics and heat transfer properties of hetero-shape tubes [J].Journal of Chemical Engineering of Chinese Universities,2003, 17(2): 146150.
[12] 吴金星,王定标,魏新利.管壳式换热器壳程流动和传热的数值模拟研究进展[J].流体机械, 2002, 30(5): 28-32..
WU Jin-xing, WANG Ding-biao, WEI Xin-li..Progress in numerical simulation study of fluid flow and heat transfer in shell side of shell and tube heat exchangers [J]. Fluid Machinery, 2002, 30(5): 28-32.
[13] DENG X H, DENG S J. Investigation of heat transfer enhancement of roughened tube bundles supported by ring or rod supports [J].Heat Transfer Engineering, 1998, 19(2): 21-27.
[14] 王永庆.纵流壳程换热器不同支承结构壳程特性研究与分析[D].郑州: 郑州大学 , 2005.
WANG Yong-qing..Research and analysis of shell side characteristic wit h different support structures in heat exchangers with longitudinal flow of shell side fluid [D] .Zhengzhou : Zhengzhou University , 2005.
[15] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006: 229300.
[16]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004: 113-143.
[17] 过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003, 39(12): 19.
GUO Zeng-yuan. Principle of field coordination in heat exchanger and its applications [J].Chinese Journal of Mechanical Engineering,2003,39(12): 19.

[1] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[2] 张琳琳, 赵蕾, 杨柳. 管群间歇散热的土壤温度响应与恢复特性[J]. 浙江大学学报(工学版), 2016, 50(2): 299-305.
[3] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.
[4] 姚华,盛德仁,陈坚红,李蔚,洪荣华. 重力热管蒸汽发生器热力学分析[J]. J4, 2012, 46(9): 1678-1684.
[5] 颜卫国,俞小莉,陆国栋,周健伟. 热管中冷器的传热与阻力特性[J]. J4, 2011, 45(1): 132-135.