Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1554-1558    DOI: 10.3785/j.issn.1008-973X.2013.09.006
计算机技术,无线电电子学     
基于最少拍无波纹算法的高精度动态标准源反馈控制
叶凌云,陈波,张建,宋开臣
 浙江大学 生物医学工程与仪器科学学院,浙江 杭州 310027
Feedback control of high precision dynamic standard source  based on ripple-free deadbeat algorithm
YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen
Department of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对在高动态精度电压电流标准源反馈控制中,因系统纯滞后时间大于控制节拍而导致系统不稳定的问题,研究将最少拍无波纹控制技术应用于动态标准源控制的方法.通过实验获取系统阶跃响应和纯滞后时间,进而辨识系统传递函数,在此基础上设计出针对高精度动态电压电流标准源的最少拍无波纹控制器.通过仿真验证了方法的有效性,并在实际的硬件系统中进行了实验验证,得到了系统动态性能指标.实验表明:采用最少拍无波纹算法的动态标准源输出正弦信号,1 Hz正弦输出时,幅值不确定度达到量程的±6.7×10-6以下,总谐波失真达到0.01%以下,证明了最少拍无纹波控制算法的有效性.

Abstract:

Closed loop feedback method is used in the voltage/current source instrument to achieve the high AC precision. If the pure time delay of the system is larger than one control beat, the feedback system would be unstable. A ripple-free deadbeat algorithm was proposed for the feedback control of the high dynamic precision voltage/current source instrument. Firstly, the pure time delay and the step response were measured precisely via experiment. Then, the transfer function was identified. And finally, a kind of appropriate ripple-free deadbeat controller was designed based on the transfer function for the instrument. The effectiveness of the control algorithm was verified by simulation. After that, some experiments were applied on the instrument, and the dynamic performance was gained. The experimental results showed that when the dynamic standard adopts the ripple-free deadbeat and outputs 1 Hz sinusoidal signal, the amplitude uncertainty of the output signal can be less than ±6.7×10-6 of range, and the total harmonic distortion can be less than 0.01%.

出版日期: 2013-09-01
:  TP 273  
作者简介: 叶凌云(1977-),男,博士,讲师,主要从事精密仪器设计、高速信号处理技术研究.E-mail:zjujerry@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.

YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen. Feedback control of high precision dynamic standard source  based on ripple-free deadbeat algorithm. J4, 2013, 47(9): 1554-1558.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.09.006        http://www.zjujournals.com/eng/CN/Y2013/V47/I9/1554

[1] NORRNEY-RICO J E, GARCIA P, GONZALEZ A. Robust stability analysis of filtered Smith predictor for time-varying

delay processes[J]. Journal of Process Control,2012, 22(10): 1975-1984.
[2] 杜振辉,李朝阳,蒋诚志,等. 基于Smith预估器的直流伺服控制器[J]. 仪器仪表学报,2003,24(4):326-328.
DU Zhen-hui, LI Zhao-yang, JIANG Cheng-zhi, et al. Design of DC servo-controller using smith estimator[J]. Chinese

Journal of Scientific Instrument, 2003,24(4):326-328.
[3] 颜菡,王先逵,段广洪. 基于最少拍无波纹的零相位误差跟踪控制在精密直线位移装置中的应用[J]. 机械工程学报, 2007(5):

111-115.
YAN Han, WANG Xian-kui, DUAN Guang-hong. Application of zpetc based least-beat and non-ripple control in precision linear

motor displacement systeM[J]. Chinese Journal of Mechanical Engineering, 2007(5): 111-115.
[4] LEE J H, KIM C G, YOUN M J. A dead-beat type digital controller for the direct torque control of an induction motor

[J]. IEEE Transactions on Power Electronics,2002, 17(5): 739-746.
[5] MONFARED M, RASTEGAR H. Design and experimental verification of a dead beat power control strategy for low cost

three phase PWM converters[J]. International Journal of Electrical Power & Energy Systems, 2012, 42(1): 418-425.
[6] MOSNA J, MELICHAR J, PESEK P. Minimum effort dead-beat control of linear servomechanisms with ripple-free response

[J]. Optimal Control Applications & Methods, 2001, 22(3): 127-144.
[7] 陈垒. 连续系统的传递函数模型辨识[D].无锡:江南大学, 2012.
CHEN Lei. Identification for transfer function models of continuous-time systems[D]. Wuxi:Jiangnan University, 2012.
[8] 宋志安,王文馨. 由阶跃响应曲线辨识传递函数的图解方法[J]. 山东科技大学学报:自然科学版, 2003, 22(1): 61-63.
SONG Zhi-an, WANG Wen-xin. Diagrammatic method of transfer function identified by step-up response curves[J]. Journal

of Shangdong University of Science and Technology:Natural Science, 2003, 22(1): 61-63.
[9] ANANTH I, CHIDAMBARAM M. Closed-loop identification of transfer function model for unstable systems[J]. Journal

of the Franklin Institute-engineering and Applied Mathematics,1999, 336(7): 1055-1061.
[10] 王伟,宋明顺,陈意华,等. 蒙特卡罗方法在复杂模型测量不确定度评定中的应用[J]. 仪器仪表学报,2008(7): 1446-1449.
WANG Wei,SONG Ming-shun, CHEN Yi-hua, et al. Application of Monte-Carlo method in measurement uncertainty evaluation of

complicated model[J]. Chinese Journal of Scientific Instrument, 2008(7): 1446-1449.
[11] 王琳娜,孟晓风. 一种新的正弦信号失真度评估方法[J]. 电子测量与仪器学报,2005(3): 67-71.
WANG Lin-na, MENG Xiao-feng. A new evaluation method for the distortion of sinusoidal signal[J]. Journal of Electronic

Measurement and Instrument, 2005(3): 67-71.
[12] 张耀,赵光宙,黄忠慧. 一种高精度失真度测量仪的研制[J]. 仪器仪表学报, 2007(5): 837-842.
ZHANG Yao, ZHAO Guang-zhou, HUANG Zhong-hui. Development of high precision distortion meter[J]. Chinese Journal of

Scientific Instrument, 2007(5): 837-842.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[7] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[8] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[9] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[10] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[11] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[12] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[13] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[14] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.
[15] 邹涛, 李海强. 具有积分环节多变量系统的双层结构预测控制[J]. J4, 2011, 45(12): 2079-2087.