Please wait a minute...
J4  2010, Vol. 44 Issue (5): 982-987    DOI: 10.3785/j.issn.1008-973X.2010.05.024
机械与能源工程     

航空钛合金高速切削有限元建模
吴红兵1, 贾志欣1, 刘刚2, 毕运波2, 董辉跃2
1. 浙江大学宁波理工学院 机电与能源工程学院,浙江 宁波 315100;
2. 浙江大学 机械与能源工程学院,浙江 杭州 310027
Finite element modeling of Ti6Al4V alloy high speed cutting
WU Hong-bing1, JIA Zhi-xin1, LIU Gang2, BI Yun-bo2, DONG Hui-yue2
1. School of Mechanical and Energy, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
2. College of Mechanical and Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了正确模拟钛合金Ti6Al4V高速切削过程中锯齿状切屑形成的过程,深入研究有限元建模过程中有限元模型的建立、材料本构关系、切屑分离准则、材料失效准则、切削热动态耗散与热传导等关键技术.结合实例,分别采用热力耦合分析和绝热分析对钛合金Ti6Al4V的加工过程进行正交切削有限元模拟.通过对2种模型获得的应力分布、温度分布、切削力曲线进行分析,以及将2种模型获得的锯齿状切屑与实际切屑形状进行对比,证明了绝热剪切是导致高速切削钛合金生成锯齿状切屑的原因.

Abstract:

In order to correctly simulate the segmented chip formation of titanium alloy Ti6Al4V during high speed cutting, the key techniques of finite element modeling were investigated, which included establishing the finite element model, the material constitutive relation, the chip separation criteria, the material failure criteria, the heat dissipation and conduction. A high speed cutting case of titanium alloy Ti6Al4V was simulated with the thermal mechanical coupled analysis and the adiabatic analysis, respectively. Then the stress distribution, the temperature distribution and the cutting force curve were achieved. The comparison of the two simulation results shows that the segmented chip is formed because of the adiabatic shear.

出版日期: 2012-03-19
:  TH 16  
基金资助:

宁波市自然科学基金资助项目(2007A610017,2008A610049).

作者简介: 吴红兵(1979—),男,湖北京山人,讲师,从事先进制造技术研究. E-mail:wuhongbing7907@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴红兵, 贾志欣, 刘刚, 毕运波, 董辉跃.
航空钛合金高速切削有限元建模[J]. J4, 2010, 44(5): 982-987.

TUN Gong-Bing, GU Zhi-Xin, LIU Gang, BI Yun-Bei, DONG Hui-Ti. Finite element modeling of Ti6Al4V alloy high speed cutting. J4, 2010, 44(5): 982-987.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.05.024        http://www.zjujournals.com/eng/CN/Y2010/V44/I5/982

[1] XIE J Q, BAYOUMI A E, ZBIB H M. A study on shear banding in chip formation of orthogonal machining[J]. International Journal of Machine Tools and Manufacture, 1996, 36(7): 835847.
[2] BAKERM R, OSLER J, SIEMERS C. A finite element model of high speed metal cutting with adiabatic shearing[J]. Computers and Structures, 2002, 80(5): 495513.
[3] CERETTIA E, LUCCHIA M, ALTAN T. FEM simulation of orthogonal cutting serrated chip formation[J]. Journal of Materials Processing Technology, 1999, 95(1): 1726.
[4] NG E G, ASPINWALL D K. Modelling of hard part machining[J]. Journal of Materials Processing Technology, 2002, 127: 222229.
[5] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J] ∥Proceedings of 7th International Symposium on Ballistics. Netherlands: [s.n.], 1983: 541547.
[6] RECHT R F. Catastrophic thermoplastic shear[J].Journal of Applied Mechanics,1964,86(5): 189193.
[7] 艾兴.高速切削加工技术[M].北京:国防工业出版社,2003: 3440.

[1] 邓小雷, 傅建中, 贺永, 陈子辰. 精密数控机床主轴系统多物理场耦合热态特性[J]. J4, 2013, 47(10): 1863-1870.