Please wait a minute...
浙江大学学报(工学版)
机械工程     
基于气动肌肉仿人下肢动力学
姜飞龙,陶国良,刘昊,赵勇,李庆伟
浙江大学 流体动力与机电系统国家重点实验室 浙江 杭州310027
Dynamic analysis of humanoid lower limb based on PAM
JIANG Fei long, TAO Guo liang, LIU Hao, ZHAO Yong, LI Qin gwei
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, 310027, China
 全文: PDF(1240 KB)   HTML
摘要:

为了更好地了解肌肉在人下肢运动过程中的作用,分析人体下肢骨、骨骼肌的组成和功能,提出以气动肌肉作为驱动元件的柔性并联机构仿人下肢,并且踝关节绕垂直轴的旋转运动移动到膝关节.通过单刚体形式的气动肌肉、虚功原理、结构矩阵相结合推导包含肌肉的仿人下肢髋关节动力学方程,同时仿真分析各肌肉的运动学特性.结果表明,在下肢单腿运动周期的承重期、支撑相和摆动相内,股直肌、薄股肌、小腿三头肌、外侧群肌运动特性相近,大腿后侧肌群、股二头肌、前群肌的运动特性相反,臀大肌、内收肌基本不运动.

Abstract:

The makeup and role of human lower limb bones and skeletal muscles were analyzed in order to better understand the role of lower limb muscle in human movement. Flexible parallel mechanism humanoid lower limb was proposed and pneumatic artificial muscle (PAM) was taken as driver. The rotatory morement that  ankle joint  rotating around vertical axis was transferred to the knee joint. Dynamic equation of hip joint was calculated through combining virtual work, Jacobian matrix and PAM which is single rigid block with each other. Kinematics characteristics of muscles were analyzed through simulation. Results shows that in the bearing period, supporting phase and swing phase of lower limb movement cycle, rectus femoris, gracilis, musculi triceps surae and lateral group muscle with similar kinetic characteristics.Hamstring, biceps flexor cruris and anterior group muscle work in contrary way. Gluteus maximus and adductor almost keep static.

出版日期: 2015-11-01
:  TP 24  
基金资助:

 国家自然科学基金资助项目(E050202);浙江省自然科学基金资助项目(LY13E050004).

通讯作者: 陶国良,男,教授,博导.ORCID:0000 0002 6301 6865.     E-mail: gltao@sfp.zju.edu.cn
作者简介: 姜飞龙(1985-),男,博士生,从事气动仿生、气动电子等方向研究.ORCID:0000 0003 0382 1245.E-mail:zhenjiang007@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姜飞龙,陶国良,刘昊,赵勇,李庆伟. 基于气动肌肉仿人下肢动力学[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.11.005.

JIANG Fei long, TAO Guo liang, LIU Hao, ZHAO Yong, LI Qin gwei. Dynamic analysis of humanoid lower limb based on PAM. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.11.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.11.005        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2054

[1] VANDERBORGHT B, VANHAM R, VERRELST B, et al. Overview of Lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles [J].Advanced Robotics, 2008, 22(10):1027-1051.
[2] WALKER R. The shadow biped[EB/OL]. [2013 08 21].http:∥www.shadow.org.uk/projects/biped.shtml
[3] TAKUMA T, HOSODA K. Controlling the walking period of a pneumatic muscle walker[J]. The International Journal of Robotics Research, 2006,25(9):861-866.
[4]HOSODA K, TAKUMA T, NAKAMOTO A, et al. Biped robot design powered by antagonistic pneumatic actuators for multi modal locomotion [J].Robotics and Autonomous Systems,2008,56 (1):46-53.
[6]NARIOKA K, HOSODA K. Design synergistic walking of a whole body humanoid driven by pneumatic artificial muscles: an empiricial study [J]. Advanced Robotics, 2008, 22(10): 1107-1123.
[7]HOSDA K, SAKAGUCHI Y, TAKAYAMA H, et al. Pneumatic driven jumping robot with anthropomorphic muscular skeleton structure [J]. Auton Robot,2010,28(3):307-316.
[8] OGAWA K, NARIOKA K, HOSODA K. Development of whole body humanoid ‘Pneumat BS′ with Pneumatic musculoskeletal system[C]∥ Proceedings of 2011 IEEE/RSJ International Conference on Robots and Systems Intelligent Robots and Systems (IROS). [S. l.]: IEEE, 2011:4838-4843.
[9] NIIYAMA R.Design principle based on maximum output force profile for a musculoskeletal robot [J]. Industrial Robot: an International Journal, 2010,37 (3) : 250-255.
[10] NIIYAMA R, NISHIKAWA S, KUNIYOSHI Y. Athlete robot with applied human muscle activation patterns for bipedal running[C]∥ Proceedings of 2010 IEEE RAS International Conference on Humanoid Robots. [S. l.]: IEEE, 2010: 498-503.
[11] 柏树令,应大君,丁文龙等.系统解剖学[M].北京:人民卫生出版社, 2010.
[12] 黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社, 2012:169-182.
[13] LIU Shan zeng,YU Yue qing,ZHU Zhen cai, et al. Dynamic modeling and analysis of 3 RRS parallel manipulator with flexible links [J].Journal of Central South University, 2010, 17 (2): 323-331.
[14] ABDELLATIF H, HEIMANN B. Computational efficient inverse dynamics of 6 DOF fully parallel manipulators by using the Lagrangian formalism [J].Mechanism and Machine Theory,2009,44(1):192-207.
[15] YEN Ping lang, LAI Chi chung. Dynamic modeling and control of a 3 DOF Cartesian parallel manipulator [J]. Mechatronics, 2009, 19(3):390-398.
[16]GUO H B, LI H R. Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(1):61-72.
[17]HUANG L,XU W L, TORRANCE J. Design of a position and force control scheme for 6RSS parallel robots and its application in chewing robots [J]. International Journal of Humanoid Robotics, 2010, 7(3): 477-489.
[18] DUAN Q J, DUAN X C. Analysis of cable actuated parallel robot with variable length and velocity cable [J]. Procedia Engineering, 2011(15): 2732-2737.
[19] TSAI LW. Solving the inverse dynamics of a Stewart Gough manipulator by the principle of virtual work [J]. Journal of Mechanical design, 2000,122(1):1-9.
[20] 李永刚, 宋轶民, 冯志友,等. 基于牛顿 欧拉法的3 RPS并联机构逆动力学分析.航空学报[J]. 2007, 28(5):1210-1214.
LI Yong gang, SONG Yin min, Feng Zhi you, et al. Inverse dynamic of 3 RPS parallel mechanism by Newton Euler formulation [J]. Acta Aeronautica Et Astronautica Sinica, 2007, 28(5):1210-1214.
[21]WANG Jin song, WU Jun, WANG Li ping, et al. Simplified strategy of the dynamic model of a 6 UPS parallel kinematic machine for real time control [J]. Mechanism and Machine Theory, 2007,42 (9):1119-1140.
[22] LEE SH, SONG JB, CHOI WC, et al. Position control of a Stewart platform using inverse dynamics control with approximate dynamics [J]. Mechatronics, 2003, 13(6):605-619.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 张铭奎, 程文明, 刘放. 助力外骨骼负载特征与驱动特征耦合效应[J]. 浙江大学学报(工学版), 2017, 51(4): 807-816.
[3] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[4] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[5] 陈鹏, 项基, 韦巍. 基于GWLN方法的冗余机械臂关节力矩约束控制[J]. 浙江大学学报(工学版), 2017, 51(1): 68-74.
[6] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[7] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[8] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[9] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[10] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[11] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[12] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[13] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[14] 黄水华,江沛,韦巍,项基,彭勇刚. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179.
[15] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.