Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (6): 1078-1085    DOI: 10.3785/j.issn.1008-973X.2020.06.004
土木工程     
基于粒子图像测速的高含水率软土真空预压试验
潘晓东(),周廉默,孙宏磊,蔡袁强,史吏,袁宗浩
浙江工业大学 建筑工程学院,浙江 杭州 310014
Vacuum preloading test for high moisture content slurry using particle image velocimetry
Xiao-dong PAN(),Lian-mo ZHOU,Hong-lei SUN,Yuan-qiang CAI,Li SHI,Zong-hao YUAN
Department of Architecture Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
 全文: PDF(1237 KB)   HTML
摘要:

为了更加直观地研究真空预压过程中土体的固结变形规律,采用粒子图像测速技术(PIV),开展高含水率软土真空预压模型试验,观测真空预压过程中塑料排水板(PVDs)周围土体位移场的变化. 结果表明:排水板周围土体产生了水平方向的位移,且随着真空预压的进行,产生水平位移的范围不断扩大;排水板近处的土体以水平位移为主,主要发生径向固结,距排水板远处土体以竖向位移为主,主要发生竖向固结,并因此形成了排水板处土体凸起而远处下沉的“土桩”现象. 结合孔隙水压力值监测结果,认为土体中不同区域的径向固结存在差异,距离排水板近处的土体排水固结更快. 另外,对于距离排水板15 cm范围内的土体,通过径向位移计算得到的固结度大于通过孔隙水压力值计算得到的固结度.

关键词: 真空预压塑料排水板(PVDs)粒子图像测速技术(PIV)高含水率软土    
Abstract:

The particle image velocimetry (PIV) technique was used to obtain the displacement field of dredged slurry with high water content utilizing prefabricated vertical drains (PVDs), in order to investigate the consolidation behavior of the soil around the drain under the vacuum pressure. As results, the soil near the PVD experienced horizontal displacement and the inward lateral displacement expanded to regions away from the PVD along with the vacuum preloading process. The soil near the PVD mainly underwent radial consolidation, and the vertical displacement of the soil away from the drain was bigger. The vertical displacement accumulated, forming a “soil pile” phenomenon in which the soil neighboring the PVD was convex. The measurement results from the pore pressure also show the difference in radial consolidation at diverse positions, and the soil which is located near the PVD consolidate faster. As for soil located 15 cm from the PVD, the degree of consolidation calculated by displacements is larger than the degree of consolidation calculated by pore pressure dissipation.

Key words: vacuum preloading    prefabricated vertical drains (PVDs)    particle image velocimetry (PIV)    soft clay with high moisture content
收稿日期: 2019-05-20 出版日期: 2020-07-06
CLC:  TU 411  
基金资助: 国家重点研发计划资助项目(2016YFC0800200);国家自然科学基金资助项目(51978621,51620105008);浙江省重点研发计划资助项目(2018C03038)
作者简介: 潘晓东(1977—),男,副教授,博士,从事土力学及地基处理研究. orcid.org/0000-0002-0740-0600. E-mail: pxd@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
潘晓东
周廉默
孙宏磊
蔡袁强
史吏
袁宗浩

引用本文:

潘晓东,周廉默,孙宏磊,蔡袁强,史吏,袁宗浩. 基于粒子图像测速的高含水率软土真空预压试验[J]. 浙江大学学报(工学版), 2020, 54(6): 1078-1085.

Xiao-dong PAN,Lian-mo ZHOU,Hong-lei SUN,Yuan-qiang CAI,Li SHI,Zong-hao YUAN. Vacuum preloading test for high moisture content slurry using particle image velocimetry. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1078-1085.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.004        http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1078

图 1  真空预压模型试验系统示意图
图 2  真空预压试验模型箱装置
图 3  土体粒子图像测速(PIV)计算原理示意图
图 4  淤泥土粒径分布曲线
图 5  土体在每一个24 h内的位移变化云图
图 6  土体在192 h内位移场云图
图 7  土体全场水平位移最大值与速度变化曲线
图 8  不同径向位置处的水平位移值
图 9  孔隙水压力值随时间变化曲线
1 HONG Z, YIN J, CUI Y J Compression behaviour of reconstituted soils at high initial water contents[J]. Geotechnique, 2010, 60 (9): 691- 700
doi: 10.1680/geot.09.P.059
2 鲍树峰, 娄炎, 董志良, 等 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36 (7): 1350- 1359
BAO Shu-feng, LOU Yan, DONG Zhi-liang, et al Causes and counter measures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (7): 1350- 1359
doi: 10.11779/CJGE201407020
3 孙立强, 闫澍旺, 李伟, 等 超软土真空预压室内模型试验研究[J]. 岩土力学, 2011, 32 (4): 984- 990
SUN Li-qiang, YAN Shu-wang, LI Wei, et al Study of super-soft soil vacuum preloading model test[J]. Rock and Soil Mechanics, 2011, 32 (4): 984- 990
doi: 10.3969/j.issn.1000-7598.2011.04.005
4 唐彤芝, 黄家青, 关云飞, 等 真空预压加固吹填淤泥土现场试验研究[J]. 水运工程, 2010, (4): 115- 122
TANG Tong-zhi, HUANG Jia-qing, GUAN Yun-fei, et al Experimental study on dredger fill sludge improved by vacuum preloading[J]. Port and Waterway Engineering, 2010, (4): 115- 122
doi: 10.3969/j.issn.1002-4972.2010.04.027
5 武亚军, 杨建波, 张孟喜 真空加载方式对吹填流泥加固效果及土颗粒移动的影响研究[J]. 岩土力学, 2013, 34 (8): 2129- 2135
WU Ya-jun, YANG Jian-bo, ZHANG Meng-xi Study of impact of vacuum loading mode on dredger fill flow mud consolidation effect and soil particles moving[J]. Rock and Soil Mechanics, 2013, 34 (8): 2129- 2135
6 陈雷, 张福海, 李治朋, 等 排水板周围土体径向固结室内模型试验研究[J]. 岩土工程学报, 2016, 38 (Suppl.1): 163- 168
CHEN Lei, ZHANG Fu-hai, LI Zhi-peng, et al Experimental study on radial consolidation of soil around drainage plate[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (Suppl.1): 163- 168
7 鲍树峰, 董志良, 娄炎, 等 高黏粒含量新近吹填淤泥加固新技术室内研发Ⅱ[J]. 浙江大学学报: 工学版, 2015, 49 (9): 1707- 1715
BAO Shu-feng, DONG Zhi-liang, LOU Yan, et al Laboratory research on new improvement technology of newly hydraulic reclamation mud with high clay content Ⅱ[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (9): 1707- 1715
8 徐乃芳, 张云, 高倚山, 等 真空堆载联合预压作用下软土地基位移和孔压变化规律研究[J]. 工程勘察, 2010, 38 (7): 1- 7
XU Nai-fang, ZHANG Yun, GAO Yi-shan, et al Study on laws of the displacement and the pore water pressure variation in strengthening soft ground by using vacuum-surcharge preloading[J]. Geotechnical Investigation and Surveying, 2010, 38 (7): 1- 7
9 施建勇, 雷国辉, 艾英钵, 等 关于真空预压沉降计算的研究[J]. 岩土力学, 2006, 27 (3): 365- 368
SHI Jian-yong, LEI Guo-hui, AI Ying-bo, et al Research of settlement calculation for vacuum preloading[J]. Rock and Soil Mechanics, 2006, 27 (3): 365- 368
doi: 10.3969/j.issn.1000-7598.2006.03.005
10 MATYAS E L, ROTHENBURG L Estimation of total settlement of embankments by field measurements[J]. Canadian Geotechnical Journal, 1996, 33: 834- 841
doi: 10.1139/t96-110-330
11 WHITE D J, TAKE W A, BOLTON M D Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Geotechnique, 2003, 53 (7): 619- 631
doi: 10.1680/geot.2003.53.7.619
12 刘振亚, 刘建坤, 李旭, 等 PIV技术在非饱和冻土冻胀模型试验中的实现与灰度相关性分析[J]. 岩土工程学报, 2018, 40 (2): 313- 320
LIU Zhen-ya, LIU Jian-kun, LI Xu, et al Application of PIV in model tests on frozen unsaturated soils and grayscale correlation analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (2): 313- 320
doi: 10.11779/CJGE201802012
13 袁炳祥, 吴跃东, 陈锐, 等 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报: 工学版, 2016, 50 (10): 2031- 2036
YUAN Bing-xiang, WU Yue-dong, CHEN Rui, et al Model test on displacement field of internal soil induced by laterally loading pile[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (10): 2031- 2036
14 王世鑫, 王旭东 基于粒子图像测速技术的黏性土变形测量研究[J]. 南京工业大学学报: 自然科学版, 2015, (2): 102- 107
WANG Shi-xin, WANG Xu-dong Deformation measurement of cohesive soil based on PIV technology[J]. Journal of Nanjing Tech University: Natural Science Edition, 2015, (2): 102- 107
15 STANIER S A, WHITE D J Improved image-based deformation measurement in the centrifuge environment[J]. Geotechnical Testing Journal, 2013, 36 (6): 1- 14
16 TAKE W A, BOLTON M D Seasonal ratcheting and softening in clay slopes, leading to first-time failure[J]. Geotechnique, 2011, 61 (9): 757- 769
doi: 10.1680/geot.9.P.125
17 HU L W. Consolidation behavior of soft soil subjected to on-land and underwater vacuum preloading [D]. Hong Kong: The Hong Kong University of Science and Technology, 2010.
18 STANIER S A, BLABER J, TAKE W A, et al Improved image-based deformation measurement for geotechnical applications[J]. Canadian Geotechnical Journal, 2016, 53: 727- 739
doi: 10.1139/cgj-2015-0253
[1] 武亚军, 顾赛帅, 强小兵, 黄伟钧, 卢立海, 骆嘉成. 基于骨架构建药剂真空预压法加固超软土试验[J]. 浙江大学学报(工学版), 2018, 52(4): 735-743.
[2] 鲍树峰,董志良,娄炎,莫海鸿,陈平山,周红星,罗彦. 高黏粒含量新近吹填淤泥加固新技术室内研发Ⅱ[J]. 浙江大学学报(工学版), 2015, 49(9): 1707-1715.
[3] 邵碧娟,李相鹏,李婷婷,王家德. 网板结构柱塞流电化学反应器流场的测试[J]. 浙江大学学报(工学版), 2015, 49(1): 130-135.
[4] 张仪萍, 李剑.  真空预压排水机制室内模型试验研究[J]. 浙江大学学报(工学版), 2014, 48(4): 679-685.
[5] 朱斌 陈若曦 陈云敏 詹良通. 分层真空预压软土地基一维大变形固结模型及试验研究[J]. J4, 2007, 41(11): 1927-1931.