Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (1): 11-18    DOI: 10.3785/j.issn.1008-973X.2019.01.002
土木工程     
能源载体条件下静钻根植桩承载特性
王忠瑾1,2,3, 张日红3, 王奎华1, 方鹏飞2, 谢新宇1,2, 徐韩强1, 李金柱2
1. 浙江大学 建筑工程学院, 浙江 杭州 310058;
2. 浙江大学 宁波理工学院, 浙江 宁波 315100;
3. 中淳高科桩业股份有限公司, 浙江 宁波 315000
Bearing characteristic of static drill rooted pile considering condition of energy carrier
WANG Zhong-jin1,2,3, ZHANG Ri-hong3, WANG Kui-hua1, FANG Peng-fei2, XIE Xin-yu1,2, XU Han-qiang1, LI Jin-zhu2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
3. ZCONE High-tech Pile Industry Holdings Co. Ltd., Ningbo 315000, China
 全文: PDF(1856 KB)   HTML
摘要:

为了研究温度荷载影响下静钻根植桩的承载特性,通过室内试验测得温度在混凝土-土界面上的传导特性及对界面接触摩阻力的影响. 测试结果表明,接触压力对温度传导无明显影响,温度对混凝土-土接触面上摩阻力无明显影响. 根据试验测试结果,采用顺序热力耦合分析方法,建立考虑温度荷载影响的静钻根植桩受力分析有限元模型. 计算结果表明,制热及降温过程对静钻根植桩承载特性的影响受桩顶荷载的影响较大. 温度荷载引起的预制桩桩身轴力、桩侧摩阻力及桩顶、桩端位移、水泥土竖向应力的变化均与桩顶荷载相关,制热与降温过程引起的静钻根植桩承载特性变化有较大差异.

Abstract:

Laboratory tests were conducted to obtain the conduction characteristics of the temperature on the concrete-soil interface and the effect on the contact resistance of the interface in order to analyze the bearing characteristics of static drill rooted pile under the influence of temperature. The tested results show that the contact pressure has no obvious effect on the temperature conduction and the temperature has no obvious effect on the frictional resistance of the concrete-soil interface. A finite element model considering the influence of temperature was established by adopting sequential thermal mechanical coupling method to analyze the bearing characteristics of the static drill pile. The calculation results showed that the influence of the heating and cooling process on the bearing characteristics of the static drill rooted pile was greatly influenced by the pile top load. The variations of the axial force and side friction resistance of precast pile, and the displacement at pile top and pile end, and the vertical stress of cement soil are all related to the pile top load. The bearing characteristics of the static drill rooted pile caused by the heating and cooling have great differences.

收稿日期: 2018-03-28 出版日期: 2019-01-07
CLC:  TU473  
基金资助:

国家自然科学基金资助项目(51708496,51708497);浙江省自然科学基金资助项目(LY16E080010,LQ18E080001);宁波市自然科学基金资助项目(2016A610216)

通讯作者: 张日红,男,教授级高工.orcid.org/0000-0002-2461-9233.     E-mail: zhangrihong5@hotmail.com
作者简介: 王忠瑾(1986-),男,博士后,从事桩基工程、基础工程、能源桩等研究.orcid.org/0000-0001-6765-3098.E-mail:zhongjin_wang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

王忠瑾, 张日红, 王奎华, 方鹏飞, 谢新宇, 徐韩强, 李金柱. 能源载体条件下静钻根植桩承载特性[J]. 浙江大学学报(工学版), 2019, 53(1): 11-18.

WANG Zhong-jin, ZHANG Ri-hong, WANG Kui-hua, FANG Peng-fei, XIE Xin-yu, XU Han-qiang, LI Jin-zhu. Bearing characteristic of static drill rooted pile considering condition of energy carrier. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 11-18.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.01.002        http://www.zjujournals.com/eng/CN/Y2019/V53/I1/11

[1] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(01):176-181 LIU Han-long, KONG Gang-qiang, WANG Hong-wei. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(01):176-181
[2] 张阳, 尹铁峰, 范高飞, 等. 考虑热交换作用的桩基承载力特性研究[J]. 水利与建筑工程学报, 2017, 15(03):203-208 ZHANG Yang, YIN Tie-feng, FAN Gao-fei, et al. Study on bearing capacity of pile foundation considering the heat exchange effect[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(03):203-208
[3] BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2):81-122.
[4] AKROUCH G A, SANCHEZ M, BRIAUD J. Thermo-mechanical behavior of energy piles in high plasticity clays[J]. Acta Geotechnica, 2014, 9(3):399-412.
[5] ZHANG W, YANG H, FANG L, et al. Study on heat transfer of pile foundation ground heat exchanger with three-dimensional groundwater seepage[J]. International Journal of Heat and Mass Transfer, 2017, 105:58-66.
[6] DI DONNA A, LALOUI L. Numerical analysis of the geotechnical behaviour of energy piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(8):861-888.
[7] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 8(30):763-781.
[8] BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London:geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Geotechnique, 2009, 59(3):237-248.
[9] AMATYA B, SOGA K, BOURNE-WEBB P J, et al. Thermo-mechanical behaviour of energy piles[J]. Géotechnique, 2012, 62(6):503-519.
[10] MIMOUNI T, LALOUI L. Behaviour of a group of energy piles[J]. Canadian Geotechnical Journal, 2015, 52(12):1913-1929.
[11] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(06):1087-1094 GUI Shu-qiang, CHENG Xiao-hui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(06):1087-1094
[12] 李翔宇, 郭红仙, 程晓辉. 能源桩温度分布的试验与数值研究[J]. 土木工程学报, 2016, 49(04):102-110 LI Xiang-yu, GUO Hong-xian, CHENG Xiao-hui. Experimental and numerical study on temperature distribution in energy piles[J]. China Civil Engineering Journal, 2016, 49(04):102-110
[13] 路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2):334-342 LU Hong-wei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2):334-342
[14] ZARRELLA A, EMMI G, ZECCHIN R, et al. An appropriate use of the thermal response test for the design of energy foundation piles with U-tube circuits[J]. Energy and Buildings, 2017, 134:259-270.
[15] 刘汉龙, 吴迪, 孔纲强, 等. 预埋与绑扎埋管形式能量桩传热特性研究[J]. 岩土力学, 2017, 38(02):333-340 LIU Han-long, WU Di, KONG Gang-qiang, et al. Thermal response of energy piles with embedded tube and tied tube[J]. Rock and Soil Mechanics, 2017, 38(02):333-340
[16] GAO J, ZHANG X, LIU J, et al. Numerical and experimental assessment of thermal performance of vertical energy piles:an application[J]. Applied Energy, 2008, 85(10):901-910.
[17] SURYATRIYASTUTI M E, MROUEH H, BURLON S. Understanding the temperature-induced mechanical behaviour of energy pile foundations[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3344-3354.
[18] SINNATHAMBY G, KORKIALA-TANTTU L, GUSTAVSSON H. Numerical analysis of seasonal heat storage systems of alternative geothermal energy pile foundations[J]. Journal of Energy Engineering, 2015, 141(4):1-8.
[19] YAVARI N, TANG A M, PEREIRA J M, et al. A simple method for numerical modeling of mechanical behaviour of an energy pile[J]. Géotechnique Letters, 2014, 4(2):119-124.
[20] SAGGU R, CHAKRABORTY T. Cyclic thermo-mechanical analysis of energy piles in sand[J]. Geotechnical and Geological Engineering, 2015, 33(2):321-342.
[21] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 8(30):763-781.
[22] PARK H, SEUNG-RAE L, SEOK Y, et al. Evaluation of thermal response and performance of PHC energy pile:field experiments and numerical simulation[J]. Applied Energy, 2013, 103:12-24.
[23] 王成龙, 刘汉龙, 孔纲强, 等. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(01):85-91 WANG Cheng-long, LIU Han-long, KONG Gang-qiang, et al. Model test on thermal mechanical behavior of energy piles influenced with heat exchangers types[J]. Engineering Mechanics, 2017, 34(01):85-91
[24] 孔纲强, 王成龙, 刘汉龙, 等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(04):1-7 KONG Gang-qiang, WANG Cheng-long, LIU Han-long, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38(04):1-7
[25] 周佳锦, 龚晓南, 王奎华, 等. 静钻根植竹节桩抗压承载性能[J]. 浙江大学学报:工学版, 2014, 48(05):835-842 ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al. Performance of static drill rooted nodular piles under compression[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(05):835-842
[26] 钱铮. 静钻根植桩承载性能的试验研究以及数值分析[D]. 杭州:浙江大学, 2015. QIAN Zheng. Experimental study and numerical analysis of bearing capacity of statical drill and rooted pile[D]. Hangzhou:Zhejiang University, 2015.
[27] 周佳锦. 静钻根植竹节化承载及沉降化能试验研究与有限元模拟[D]. 杭州:浙江大学, 2016. ZHOU Jia-jin. Test and modeling on behavior of the pre-bored grouting planted nodular pile[D]. Hangzhou:Zhejiang University, 2016.
[28] 民用建筑热工设计规范:GB 50176-93[S]. 北京:中国计划出版社, 1993.
[29] 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2015.
[30] THOMPSON Ⅲ W H. Numerical analysis of thermal behavior and fluid flow in geothermal energy piles[D]. Blacksburg, USA:Virginia Polytechnic Institute and State University, 2013.
[31] 黄芸. 桩基埋管换热器换热性能和温变沉降特征研究[D]. 西安:西安建筑科技大学, 2016. HUANG Yun. Explorations on heat transfer performance of energy piles and the settlement characteristics aroused by cyclic temperature variations[D]. Xi'an:Xi'an University of Architecture and Technology, 2016.
[32] ALESSANDRO F, ROTTA L, LALOUI L. The interaction factor method for energy pile groups[J]. Computers and Geotechnics, 2016, 80:121-137.
[33] 钱峰. 考虑桩土相互作用热交换桩承载特性研究[D]. 宁波:宁波大学, 2017. QIAN Feng. Study on the bearing capacity of heat exchanger piles considering pile-soil interaction[D]. Ningbo:Ningbo University, 2017.

[1] 张正旋, 陈刚, 徐铨彪, 龚顺风, 肖志斌, 刘承斌. 预应力钢绞线超高强混凝土H型桩弯剪性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(1): 31-39.
[2] 丁智, 张霄, 周联英, 陈自海. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943-1953.
[3] 徐铨彪, 陈刚, 贺景峰, 龚顺风, 肖志斌. 复合配筋混凝土预制方桩接头抗弯性能试验[J]. 浙江大学学报(工学版), 2017, 51(7): 1300-1308.