Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (9): 1811-1820    DOI: 10.3785/j.issn.1008-973X.2018.09.023
机械与能源工程     
基于DEM-CFD水力旋流器的水合物浆体分离规律研究
董辉, 伍开松, 况雨春, 代茂林
西南石油大学 机电工程学院, 四川 成都 610500
Study on separation law of hydrate slurry in hydrocyclone based on CFD-DEM
DONG Hui, WU Kai-song, KUANG Yu-chun, DAI Mao-lin
College of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(1491 KB)   HTML
摘要:

采用离散元素法和计算流体力学耦合仿真的方法,研究不同入口速度下的水力旋流器分离效率.以较佳入口速度的分离效率工况为例,研究不同入口区域的水合物颗粒的力学行为与特征.结果表明:由入口上侧和入口内侧进入的水合物颗粒具有短路流特征.由入口下侧和入口中心进入的水合物颗粒以螺旋轨迹线向下运动.同时在离心浮力与离心惯性力的差值作用下,沿半径向中心运动.进入内旋流场后,水合物颗粒则改变方向,以螺旋轨迹向上运动,直至从溢流管被排出.这是典型的水合物颗粒分离运动轨迹.由入口外侧进入的水合物颗粒中大多数也具有这一特征,只有少部分水合物颗粒紧贴水力旋流器的内壁,沿边界层或在边界层附近,以螺旋轨迹一直向下运动,最终从底流口排出.这一部分水合物颗粒对总体分离效率影响最大.

Abstract:

The separation efficiency of hydrocyclone at different inlet velocities was investigated by using the discrete element method and computational fluid dynamics coupling simulation method. Taking the optimum separation efficiency as an example, the mechanical behavior and characteristics of hydrate particles at different entrance regions were studied. Results show that the hydrate particles entering from upside and inside of the inlet have short circuit flow characteristics. The hydrate particles entering from underside and center of the inlet move downward with a spiral path, which at the same time move toward the center along the radius under the action of the buoyancy and the centrifugal force. The hydrate particles change direction into the swirling and move upward with the spiral path until discharged from the overflow pipe. This is the typical separation trajectory of hydrate particles. Most hydrate particles entering from outside of the inlet also has this feature. Only few of hydrate particles are close to the inner wall of hydrocyclone and move downward with a spiral path along the boundary layer, or near the boundary layer finally discharged from the underflow. This hydrate particle has the greatest influence on the overall separation efficiency.

收稿日期: 2017-06-23 出版日期: 2018-09-20
CLC:  TQ051  
基金资助:

国家自然科学基金资助项目(L1322021);中国工程院自然基金资助项目(2013-04-ZQC-002)

通讯作者: 伍开松,男,教授.orcid.org/0000-0002-1092-1247.     E-mail: 伍开松,男,教授.orcid.org/0000-0002-1092-1247.E-mail:wks9998@163.com
作者简介: 董辉(1991-),女,硕士,从事水合物浆体多相分离研究.orcid.org/0000-0002-6691-6463.E-mail:18280358469@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

董辉, 伍开松, 况雨春, 代茂林. 基于DEM-CFD水力旋流器的水合物浆体分离规律研究[J]. 浙江大学学报(工学版), 2018, 52(9): 1811-1820.

DONG Hui, WU Kai-song, KUANG Yu-chun, DAI Mao-lin. Study on separation law of hydrate slurry in hydrocyclone based on CFD-DEM. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1811-1820.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.09.023        http://www.zjujournals.com/eng/CN/Y2018/V52/I9/1811

[1] 李慧. 固-液分离用水力旋流器的三维数值模拟研究[D]. 郑州:郑州大学, 2006. LI Hui. The 3D numerical simulation study on solid-liquid hydrocyclone[D]. Zhengzhou:Zhengzhou University, 2006.
[2] DOBY M J, NOWAKOWSKI A F, YIU I, et al. Understanding air core in hydrocyclone by studying pressure distribution as a function of viscosity[J]. International Journal of Mineral Processing, 2008, 86(1-4):18-25.
[3] 王剑刚.三维旋转湍流场激光测速研究[D]. 上海:华东理工大学, 2016:37-39. WANG Jian-gang. Three-dimensional measurement of turbulent hydrocyclone flow field with optical methods[D]. Shanghai:East China University of Science and Technology, 2016:37-39.
[4] HSIEH K T. Phenomenological model of the hydrocyclone[D]. Salt Lake City:The University of Utah, 1988:228-234.
[5] BHASKAR K U, MURTHY Y R, RAJU M R, et al. CFD simulation and experimental validation studies on hydrocyclone[J]. Minerals Engineering, 2007, 20(1):60-71.
[6] 王志斌. 水力旋流器分离过程非线性随机特性研究[D]. 四川:四川大学, 2006:68-71. WANG Zhi-bin. Research on nonlinear stochastic characteristics of separation processes in hydrocyclones[D]. Sichuan:Sichuan University, 2006:68-71.
[7] 徐继润, 罗茜, 邓常烈. 水力旋流器的径向速度[J]. 有色金属(选矿部分), 1985(5):12-17 XU Ji-run, LUO Qian, DENG Chang-lie. Radial velocity of hydrocyclone[J]. Nonferrous Metals (Mineral Processing Section), 1985(5):12-17
[8] MOUSAVIAN S M, NAJAFI A F. Numerical simulations of gas-liquid-solid flows in a hydrocyclone separator[J]. Archive of Applied Mechanics, 2009, 79(5):395-409.
[9] QIU L C, WU C Y. A hybrid DEM/CFD approach for solid-liquid flows[J]. Journal of Hydrodynamics, 2014, 26(1):19-25.
[10] CHU K, CHEN J, YU A. Applicability of a coarse-grained CFD-DEM model on dense medium cyclone[J]. Minerals Engineering, 2016, 90:43-54.
[11] CHU K W, WANG B, XU D L, et al. CFD-DEM simulation of the gas-solid flow in a cyclone separator[J]. Chemical Engineering Science, 2011, 66(5):834-847.
[12] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics:the finite volume method[M]. New York:Wiley, 1995:9-16.
[13] CUNDALL P A, HART R D. Numerical modeling of discontinue, engineering computations, 1992, (9)2:101-113. In:Comprehensive Rock Engineering, 1993, 2:231-243.
[14] 胡国明. 颗粒系统的离散元素法分析仿真[M]. 武汉:武汉理工大学出版社, 2010:8-11.
[15] 庞学诗, 水力旋流器理论与应用[M]. 长沙:中南大学出版社, 2005:52-57
[16] 冯静安, 唐小琦, 王卫兵, 等. 基于网格无关性与时间独立性的数值模拟可靠性的验证方法[J]. 新疆:石河子大学学报, 2017, 35(1):52-56 FENG Jing-an, TANG Xiao-qi, WANG Wei-bing, et al. Reliability verification method of numerical simulation based on grid independence and time independence[J]. Xinjiang:Journal of Shihezi University, 2017, 35(1):52-56
[17] 黄波, 陈晶晶. 重介质旋流器颗粒运动特性分析及数值模拟[J]. 煤炭工程, 2015, 47(5):115-117 HUANG Bo, CHEN Jing-jing. Characteristic analysis and numerical simulation of particle motion in dense medium cyclone[J]. Coal Engineering, 2015, 47(5):115-117
[18] 喻黎明, 邹小艳, 谭弘, 等. 基于CFD-DEM耦合的水力旋流器水沙运动三维数值模拟[J]. 农业机械学报, 2016, 47(1):126-132 YU Li-ming, ZOU Xiao-yan, TAN Hong, et al. 3D numerical simulation of water and sediment flow in hydrocyclone based on coupled CFD-DEM[J]. Transactions of The Chinese Society of Agricultural Machinery, 2016, 47(1):126-132
[19] 胡坤. ANSYS CFD疑难问题实例详解[M]. 北京:人民邮电出版社, 2017.
[20] 黄思. 流体机械的数值仿真研究及应用[M]. 广州:华南理工大学出版社, 2015.
[21] 陈云富. 旋转流场中颗粒运动与分布的特性研究[D]. 江苏:东南大学, 2016. CHEN Yun-fu. Investigation on the particle motion and distribution characteristics in rotational flow field[D]. Jiangsu:Southeast University, 2016.

[1] 张立栋, 韦庆文, 王擎. 回转干馏炉内挡板形状对二元颗粒运动混合的影响[J]. 浙江大学学报(工学版), 2018, 52(8): 1542-1550.
[2] 吴施熠徽, 罗坤, 樊建人. 轴流式止回阀的流动场协同分析与减阻设计[J]. 浙江大学学报(工学版), 2018, 52(1): 29-35.