Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (12): 2399-2407    DOI: 10.3785/j.issn.1008-973X.2017.12.012
机械与动力工程     
一移两转平板折展柔性铰链的建模及优化
刘凯1,3, 曹毅1,2,3, 周睿1,3, 葛姝翌1,3, 丁锐1,3
1. 江南大学 机械工程学院, 江苏 无锡 214122;
2. 上海交通大学 机械系统与振动国家重点实验室, 上海 200240;
3. 江南大学 江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122
Modeling and optimizing of one-translational and two-rotational LEMs flexure hinge
LIU Kai1,3, CAO Yi1,2,3, ZHOU Rui1,3, GE Shu-yi1,3, DING Rui1,3
1. College of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China;
3. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
 全文: PDF(1904 KB)   HTML
摘要:

为提高平板折展机构(LEMs)的灵活性,提出一种一移两转三自由度平板折展柔性铰链.综合考虑各柔性片段的变形特点,设计一移两转平板折展柔性铰链的外形结构;利用等效弹簧模型推导该铰链沿x轴、y轴方向的转动等效刚度及沿x轴方向的移动等效刚度的理论计算模型,并通过设计实例的理论计算结果和仿真分析结果对比,验证刚度计算模型的正确性;探讨各结构参数对3种等效刚度的影响灵敏度;以提高铰链的转动性能和移动性能为目标,构建一移两转平板折展柔性铰链的多目标加权优化模型,并利用基于罚函数的粒子群算法对各结构参数进行优化.结果表明:优化后的一移两转平板折展柔性铰链的各项性能都有较大提升,优化模型具备可行性.

Abstract:

A new one-translational and two-rotational lamina emergent mechanisms (LEMs) flexure hinge with three degrees of freedom was presented in order to increase the flexibility of LEMs. The configuration of one-translational and two-rotational LEMs flexure hinge was designed considering the deformation feature of compliant fragments. The theoretical models of two equivalent rotational stiffness around x-axis and y-axis and one equivalent translational stiffness along x-axis were deducted. By comparing the theoretical calculation results with finite element simulation results of the design example, the validity of the theoretical calculation models was proved. The sensitivy of impact of structural parameters on the three kinds of equivalent stiffness was discussed in detail. In order to enhance the rotational capacity and mobility ability of the one-translational and two-rotational LEMs flexure hinge, a multi-objective optimization model was constructed, and the structural parameters were optimized based on particle swarm algorithm with penalty function. Results show that the properties of the one-translational and two-rotational LEMs flexure hinge are improved significantly and the optimization model is feasible.

收稿日期: 2016-07-08 出版日期: 2017-11-22
CLC:  TH122  
基金资助:

国家自然科学基金资助项目(50905075);江苏省“六大人才高峰”资助项目(ZBZZ-012);机械系统与振动国家重点实验室开放课题(MSV201712).

通讯作者: 曹毅,男,教授.orcid.org/0000-0002-5253-9900.     E-mail: caoyi@jiangnan.edu.cn
作者简介: 刘凯(1991-),男,硕士生,从事柔顺机构学研究.orcid.org/0000-0003-0551-7052.E-mail:kailiu10@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 一移两转平板折展柔性铰链的建模及优化[J]. 浙江大学学报(工学版), 2017, 51(12): 2399-2407.

LIU Kai, CAO Yi, ZHOU Rui, GE Shu-yi, DING Rui. Modeling and optimizing of one-translational and two-rotational LEMs flexure hinge. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2399-2407.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.12.012        http://www.zjujournals.com/eng/CN/Y2017/V51/I12/2399

[1] HOWELL L L. Compliant Mechanisms[M]. New York:John Wiley and Sons Inc, 2001:1-24.
[2] 林超,俞松松,陶桂宝,等.微/纳米定位平台的桥式静、动态优化设计[J]. 浙江大学学报:工学版, 2012,46(6):1067-1073. LIN Chao, YU Song-song, TAO Gui-bao, et al. Static and dynamic optimal design of bridge-type mechanism of micro/nano-positioning platform[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(6):1067-1073.
[3] 胡锋,邱丽芳,周杰,等.高平行度双稳态夹持机构设计与分析[J].工程科学学报, 2015, 37(4):522-527. HU Feng, QIU Li-fang, ZHOU Jie, et al. Design and analysis bi-stable grasper mechanisms highly parallel to the ground[J]. Chinese Journal of Engineering, 2015, 37(4):522-527.
[4] WANG R, ZHOU X, ZHU Z, et al. Compliant linear-rotation motion transduction element based on novel spatial helical flexure hinge[J]. Mechanism and Machine Theory, 2015, 92:330-337.
[5] 宗光华,贾明,毕树生,等.扑翼式微型飞行器的升力测量与分析[J].机械工程学报,2005, 41(8):120-124. ZONG Guang-hua, JIA Ming, BI Shu-sheng, et al. Measurement and analysis of lift of micro air robot with flapping wings[J]. Journal of Mechanical Engineering, 2005, 41(8):120-124.
[6] 张铭钧,刘晓白,徐建安,等.海龟柔性前肢仿生推进研究[J].机器人, 2011,33(2):229-236. ZHANG Ming-jun, LIU Xiao-bai, XU Jian-an, et al. Bionic research on Turtle's flexible forelimb propulsion[J]. Robot, 2011, 33(2):229-236.
[7] TREASE B, KOTA S. Design of adaptive and controllable compliant systems with embedded actuators and sensors[J]. Journal of Mechanical Design, 2009, 131(11):111001-111012.
[8] JACOBSEN J O, WINDER B G, HOWELL L L, et al. Lamina emergent mechanisms and their basic elements[J]. Journal of Mechanisms and Robotics, 2010,2(1):011003.
[9] JACOBSEN J O, HOWELL L L, MAGLEBY S P, et al. Components for the design of lamina emergent mechanisms[C]//ASME 2007 International Mechanical Engineering Congress and Exposition. Washington:ASME, 2007:165-174.
[10] 于靖军, 郝广波, 陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13):53-68. YU Jing-jun, HAO Guang-bo, CHEN Gui-min, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015,51(13):53-68.
[11] WINDER B G, MAGLEBY S P, HOWELL L L. A study of joints suitable for lamina emergent mechanisms[C]//ASME International Design Engineering Technical Conferences, Mechanisms and Robotics Conference. New York:ASME, 2008:339-349.
[12] JACOBSEN J O, CHEN G, HOWELL L L, et al. Lamina emergent torsional (LET) joint[J]. Mechanism and Machine Theory, 2009, 44(11):2098-2109.
[13] 邱丽芳, 韦志鸿, 俞必强,等. LET柔性铰链的等效刚度分析及其参数优化[J]. 工程力学, 2014, 31(1):188-192. QIU Li-fang, WEI Zhi-hong, YU Bi-qiang, et al.Analysis of equivalent stiffness and parameter optimization of LET flexure hinge[J]. Engineering Mechanics, 2014, 31(1):188-192.
[14] 曹毅,刘凯,单春成,等.抗拉柔性铰链的理论建模及有限元分析[J].光学精密工程,2016, 24(1):119-125. CAO Yi, LIU Kai, SHAN Chun-cheng, et al. Theory modeling and finite element analysis of tensile flexure hinge[J]. Optics and Precision Engineering, 2016,24(1):119-125.
[15] WILDING S E, HOWELL L L, MAGLEBY S P. Introduction of planar compliant joints designed for combined bending and axial loading conditions in laminaemergent mechanisms[J]. Mechanism and Machine Theory, 2012, 56:1-15.
[16] FOWLER R M, MASELLI A, PLUIMERS P, et al. Flex-16:a large-displacement monolithic compliant rotational hinge[J]. Mechanism and Machine Theory, 2014, 82:203-217.
[17] 陈贵敏,韩琪.深切口椭圆柔性铰链[J].光学精密工程, 2009,17(3):570-575. CHEN Gui-min, HAN Qi. Deep-notch elliptical flexure hinges[J]. Optics and Precision Engineering, 2009, 17(3):570-575.
[18] 卢倩,黄卫清,王寅,等.深切口椭圆柔性铰链优化设计[J].光学精密工程,2015, 23(1):206-215. LU Qian, HUANG Wei-qing, WANG Yin, et al. Optimization design of deep-notch elliptical flexure hinges[J]. Optics and Precision Engineering, 2015, 23(1):206-215.
[19] TEICHERT G H, ATEN Q T, EASTER M, et al. A metamorphic erectable cell restraint (MECR)[C]//ASME 2012 International Design Engineering Technical Conferences and Computer and Information in Engineering Conference. Chicago:ASME, 2012:197-203.
[20] CHEN G, HOWELL L L. Two general solutions of torsional compliance for variable rectangular crosssection hinges in compliant mechanisms[J]. Precision Engineering, 2009, 33(3):268-274.
[21] 邱丽芳,孟天翔,张九俏,等.平面折展机构S形柔性铰链设计与试验[J].农业机械学报,2014, 45(9):324-328. QIU Li-fang, MENG Tian-xiang, ZHANG Jiu-qiao, et al. Design and test of lamina emergent mechanisms S-shaped flexure hinge[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9):324-328.
[22] 余胜威. MATLAB优化算法案例分析与应用:进阶篇[M]. 北京:清华大学出版社, 2015:298-310.

[1] 朱卓悦, 徐志刚, 沈卫东, 杨得玉. 基于遗传蝙蝠算法的选择性拆卸序列规划[J]. 浙江大学学报(工学版), 2018, 52(11): 2120-2127.
[2] 应申舜, 林绿高, 计时鸣. 基于模态参数验证的机床结构件优化设计[J]. 浙江大学学报(工学版), 2018, 52(10): 1880-1887.