Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (12): 2383-2391    DOI: 10.3785/j.issn.1008-973X.2017.12.010
土木与交通工程     
高速列车气动性能的尺度效应分析
韩运动1,2, 姚松1
1. 中南大学 交通运输工程学院, 湖南 长沙 410075;
2. 中车青岛四方机车车辆股份有限公司 国家高速动车组总成工程技术研究中心, 山东 青岛 266111
Scale effect analysis in aerodynamic performance of high-speed train
HAN Yun-dong1,2, YAO Song1
1. School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China;
2. National Engineering Research Center for High-speed EMU, CRRC Qingdao Sifang Co. Ltd, Qingdao 266111, China
 全文: PDF(3600 KB)   HTML
摘要:

采用数值模拟方法,研究高速列车在不同运行工况(明线运行、明线交会、隧道通过以及隧道交会)下的尺度效应,探析模型缩比对列车气动力及表面压力的影响规律.结果表明:模型缩比越小,头车及整车的阻力系数越大,升力系数越小.对于单车过隧道以及隧道内交会,模型缩比的变化不影响车体表面测点的压力幅值在车体长度方向的分布特性.当列车全尺寸交会时,车体表面压力变化幅值最小.在不同运行工况下,当模型缩比为1/20时,车体壁面的压力变化幅值最大,相对全尺寸工况,幅值增加最多可达6%.研究结果可为将列车小尺度模型缩比试验外推到全尺寸时的数据修正提供理论依据,同时为模型缩比的风洞试验以及动模型试验的方案设计提供指导.

Abstract:

Calculation simulation was used to explore the scale effect in the aerodynamic performance of high-speed train under various working conditions (trains on open track, passing each other on open track, through a tunnel and passing each other in tunnel). Results show that, with decreasing model scale, the drag coefficient of the head and the whole train decreases, while the lift coefficient increases. For a single train passing through a tunnel and two trains passing each other in tunnel, the model scale does not change the surface pressure distribution properties along the train's longitudinal direction. When the train passing each other in full size, the pressure change amplitude of train surface is minimum. Under different working conditions, when the model scale is 1/20, the pressure change amplitude of wall surface is maxinmum; the increase of amplitude is up to 6%, compared with full-scale working condition. The experimental results can provide guidance for program design of data correction, wind tunnel test and moving model test when the test results of scaled models are extrapolated to the full-scale condition.

收稿日期: 2016-11-26 出版日期: 2017-11-22
CLC:  U271.91  
基金资助:

国家自然科学基金资助项目(U1134250,51405517).

通讯作者: 姚松,男,副教授.orcid.org/0000-0003-0775-2814.     E-mail: song_yao@csu.edu.cn
作者简介: 韩运动(1983-),男,博士生,从事列车空气动力学研究.orcid.org/0000-0002-7952-0388.E-mail:hanley1984@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.

HAN Yun-dong, YAO Song. Scale effect analysis in aerodynamic performance of high-speed train. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2383-2391.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.12.010        http://www.zjujournals.com/eng/CN/Y2017/V51/I12/2383

[1] 田红旗.列车空气动力学[M].北京:中国铁道出版社,2007:160-161.
[2] 刘峰,姚松,刘堂红,等.高速铁路隧道壁面气动压力实车试验分析[J].浙江大学学报:工学版,2016,50(10):2018-2024. LIU Feng, YAO Song, LIU Tang-hong, et al. Analysis on aerodynamic pressure of tunnel wall of high-speed railways by full-scale train test[J]. Journal of Zhejiang University:Engineering Science, 2016,50(10):2018-2024.
[3] BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics,2012,136(4):127-137.
[4] ZHOU D, TIAN H Q, ZHANG J, et al. Pressure transients induced by a high-speed train passing througha station[J]. Journal of Wind Engineering and Industrial Aerodynamics,2014,135(7):1-9.
[5] PAZ C, SUÁREZ E, GIL C, et al. Numerical study of the impact of windblown sand particles on a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics,2015,145(9):87-93.
[6] YANG N, ZHENG X K, ZHANG J, et al. Experimental and numerical studies on aerodynamic loads on anoverhead bridge due to passage of high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics,2015,140(6):19-33.
[7] 黄志祥,陈立,蒋科林.高速列车模型风洞试验数据的影响因素分析[J].铁道学报,2016,38(7):34-39. HUANG Zhi-xiang, CHEN Li,Jiang Ke-lin. The analysis of effect factors on wind tunnel testing data of high-speed train model[J].Journal of The China RailwaySociety,2016,38(7):34-39.
[8] NIU J Q, LIANG X F, ZHOU D. Experimental study on the effect of Reynolds number on aerodynamicperformance of high-speed train with and without yaw angle[J]. Journal of Wind Engineering and IndustrialAerodynamics,2016,157(9):36-46.
[9] BELL J R. The slipstream and wake structure of high-speed trains[D]. Melbourne:Monash University,2016.
[10] 郗艳红,毛军,柳润东,等.高速列车明线会车压力波波幅研究[J].华南理工大学学报:自然科学版,2016,44(3):118-127. XI Yan-hong, MAO Jun, LIU Run-dong, et al. A probe into air pressure pulse amplitude of high-speed trains crossing in open air[J]. Journal of South China University of Technology:Nature Science Edition, 2016, 44(3):118-127.
[11] OGAWA T, FUJⅡ K. Numerical investigation of three-dimensional compressible flows induced by a train moving into a tunnel[J]. Computers and Fluids, 1997, 26(6):565-585.
[12] MOK J K, YOO J. Numerical study on high speed train and tunnel hood interaction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001,89(1):17-29.
[13] ZHUANG Y, LU X. Numerical investigation on the aerodynamics of a simplified high-speed train undercrosswinds[J]. Theoretical and Applied Mechanics Letters,2015,65(5):181-186.
[14] SCHOBER M, WEISE M, ORELLANO A, et al. Wind tunnel investigation of an ICE 3 endcar on three standard ground scenarios[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6):345-352.
[15] ZHUANG Y, LU X. Numerical investigation on the aerodynamics of a simplified high-speed train undercrosswinds[J]. Theoretical and Applied Mechanics Letters, 2015, 266(4):5181-186.
[16] KWON H B, KIM T Y, LEE D H, et al. Numerical simulation of unsteady compressible flows induced by a high-speed train passing through a tunnel[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2003, 217(2):111-124.
[17] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(9):277-298.
[18] RICCO P, BARON A, MOLTENI P. Nature of pressure waves induced by a high-speed train travelling through a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007, 95(8):781-808.
[19] YAO S B, GUO D L, SUN Z X, et al. Multi-objective optimization of the streamlined head of high-speed trains based on the Kriging model[J]. Science China:Technical Science,2012,55(12):3495-3509.

No related articles found!