Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
卧铺动车组床垫材料吸声特性测试及仿真优化
姚丹, 张捷, 王瑞乾, 肖新标, 金学松
1.西南交通大学 牵引动力国家重点实验室,四川 成都 610031;
2.常州大学 城市轨道交通学院,江苏 常州 213164
Experiment and simulation optimization on characteristics of sound absorption of mattress material in sleeper EMU
YAO Dan, ZHANG Jie, WANG Rui qian, XIAO Xin biao, JIN Xue song
1. State Key Laboratory of Traction Power,Southwest Jiaotong University, Chengdu 610031,China;
2. School of Urban Rail Transit, Changzhou University, Changzhou 213164, China
 全文: PDF(1850 KB)   HTML
摘要:

基于传递函数法,利用阻抗管测试卧铺动车组床垫材料的吸声特性.基于声学有限元法,用DelanyBazleyMiki经验模型模拟多孔吸声材料声学属性,建立阻抗管吸声特性计算模型,并由试验结果进行校核.基于该模型,计算分析厚度、孔隙率和流阻率对卧铺动车组床垫材料吸声特性的影响.结果表明:增加厚度会使得平均吸声系数和降噪系数增大,但当厚度超过70 mm后,吸声特性变化趋于稳定,频域吸声系数主要在50 ~500 Hz的中低频显著提高|增大孔隙率会使材料平均吸声系数和降噪系数增大,但增大幅度不大,同时可使100~800 Hz的中低频吸声系数有小幅提高|增大流阻率使得平均吸声系数和降噪系数呈先增大后减小的趋势,峰值均出现在流阻率为0.5×105 Pa·s/m2左右.优化后的材料相比于原试样,提高了100~500 Hz的吸声性能,且平均吸声系数提高了12.85%,降噪系数提高了16.69%.

Abstract:

Characteristics of sound absorption of mattress material in a sleeper electric multiple unit (EMU) was tested in the impedance tube based on the transfer function method. The finite element model of impedance tube to compute sound absorption characteristic was established with Delany-Bazley-Miki model to simulate the acoustic properties of porous absorption material. The experimental results accorded with the simulation results. Effects of thickness, porosity and the flow resistivity of mattress material in a sleeper EMU on sound absorption characteristics were analyzed. Increasing the thickness of the test sample will result an increase of the average absorption coefficient and the noise reduction coefficient (NRC), but the absorption characte ristics slightly change after the thickness increases to 70 mm. In the frequency domain, the sound absorption coefficient increase significantly with the increase of thickness in the low and middle frequency of 50~500 Hz. Increasing the porosity of the material will make the average absorption coefficient and the NRC increase, but not significant. In the frequency domain, the sound absorption coefficient increase significantly with the increase of porosity in the low and middle frequency of 100~800 Hz. The average absorption coefficient and the NRC both show a trend of decrease after the first increase and its peak appears around 0.5×105 Pa·s/m2 with the increase of flow resistivity. Compared to the original sample, the optimized sample mainly improves the frequency dependent absorption coefficient of 100~500 Hz, the average absorption coefficient increases by 12.85%, and the NRC increases by 16.69%.

出版日期: 2016-08-01
:  TU 112.2  
基金资助:

国家自然科学基金资助项目(U1434201,51475390);牵引动力国家重点实验室自主研究资助项目(2015TPL_T08).

通讯作者: 肖新标(1978—),男,副研究员. ORCID: 0000-0001-5078-4817.     E-mail: xiao@home.swjtu.edu.cn
作者简介: 姚丹(1993—),女,硕士生,从事高速列车振动与噪声等研究. ORCID: 0000-0003-2793-2687. E-mail: swjtuyaodan@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姚丹, 张捷, 王瑞乾, 肖新标, 金学松. 卧铺动车组床垫材料吸声特性测试及仿真优化[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.08.009.

YAO Dan, ZHANG Jie, WANG Rui qian, XIAO Xin biao, JIN Xue song. Experiment and simulation optimization on characteristics of sound absorption of mattress material in sleeper EMU. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.08.009.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.08.009        http://www.zjujournals.com/eng/CN/Y2016/V50/I8/1486

[1] 张豫.CRH5动车组卧铺车体结构优化设计[D].北京:北京交通大学,2011.
ZHANG Yu. Research of structure optimal design for CRH5 EMU Pullman vehicle body [D]. Beijing: Beijing Jiaotong University,2011.
[2] 詹沛.高铁车厢分层复合材料声学特性及优化设计研究[D].济南:山东大学,2014.
ZHAN Pei. Research on acoustic characteristics and optimization design of layered composite material for highspeed train [D]. Jinan: Shandong University, 2014.
[3] 鞠龙华,王东镇,梁君海.高速卧铺车车内噪声特性分析[C]∥2012全国环境声学学术会议论文集.杭州:噪声与振动控制,2012: 348350.
JU Longhua,WANG Dongzhen,LIANG Junhai. Interior noise analysis of highspeed sleeper train [C] ∥ Proceedings on Acoustics of the 2012 National Environmental Conference. Hangzhou: Noise and Vibration Control,2012: 348-350.
[4] 袁健,林胜,贺才春.阻抗管中吸声系数的传递函数测量法[J].噪声与振动控制,2006,26(01): 68-70.
YUAN Jian,LIN Sheng,HE Caichun. Transfer function method of sound absorption coefficient in impedance tubes [J]. Noise and Vibration Control,2006,26(01):68-70.
[5] 张伟永.多孔金属材料吸声性能测试系统设计与实现[D].银川: 宁夏大学,2013.
ZHANG Weiyong. The design and realization of a testing system for the sound absorption properties of porous metals [D]. Yinchuan: Ningxia University, 2013.
[6] 庞业珍.基于传递函数的吸声隔声测量方法与应用研究[D].大连:大连理工大学,2005.
PANG Yezhen. Methods and applications of sound absorption and insulation measurements based on transfer functions [D]. Dalian: Dalian University of Technology, 2005.
[7] ISO: 1053421998. Acousticsdetermination of sound absorption coefficient and impedance in impedance tubesPart 2: Transferfunction method [S]. London: International Organization for Standardization, Inc,1998.
[8] 王永华.多级仿生耦合材料吸声性能及机理研究[D].长春:吉林大学,2014.
WANG Yonghua. Research on sound absorption properties and mechanisms of multilevel bionic coupling materials [D]. Changchun: Jilin University, 2014.
[9] MIKI Y. Acoustical properties of porous materials. Modifications of DelanyBazley models [J]. Journal of the Acoustical Society of Japan(E),1990,11(1): 1924.
[10] DELANY M E,BAZLEY E N. Acoustical properties of fibrous absorbent materials [J]. Applied acoustics,1970,3(2): 105-116.
[11] PANNETON R,OLNY X. Acoustical determination of the parameters governing viscous dissipation in porous media [J]. The Journal of the Acoustical Society of America,2006,119(4): 2027-2040.
[12] OLNY X,PANNETON R. Acoustical determination of the parameters governing thermal dissipation in porous media [J]. The Journal of the Acoustical Society of America,2008,23(4):814-824.
[13] 刘恺.基于VA One的多孔吸声材料的应用仿真研究[D].武汉:武汉理工大学,2010.
LIU Kai. Simulation research on the application of porous soundabsorbing material based on VA One [D]. Wuhan: Wuhan University of Technology, 2010.
No related articles found!