Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
水流剪切力对供水管道管壁生物膜生长的影响
柳景青1, 罗志逢1, 周晓燕2, 何晓芳2, 任红星3, 胡宝兰3, 裘尚德2
1. 浙江大学 建筑工程学院,浙江 杭州 310058; 2. 绍兴市水环境科学研究院有限公司,浙江 绍兴 312000;3. 浙江大学 环境与资源学院,浙江 杭州 310058
Influence of shear stress on growth of biofilm attached to drinking water distribution pipes
LIU Jing qing1, LUO Zhi feng1, ZHOU Xiao yan2, HE Xiao fang2,REN Hong xing3, HU Bao lan3, QIU Shang de2
1. College of civil engineering and architecture, Zhejiang University, Hangzhou 310058, China; 2. Shaoxing Water Environmental Science Institute Co. Ltd,Shaoxing 312000; 3. College of Environmental and Resource Sciences,Zhejiang University, Hangzhou 310058, China
 全文: PDF(1547 KB)   HTML
摘要:

利用全比例非循环管网中试平台的球墨铸铁管模拟不同水流剪切力下管壁生物膜的生长.采用总固体(TS)、挥发性固体(VS)和化学需氧量(COD)表征生物膜的理化特性,实时荧光定量PCR和RT PCR计数细菌总数和活菌数量,高通量测序(454焦磷酸测序)探究生物膜、细菌种群多样性.结果表明,水流剪切力对管壁生物膜理化指标细菌总数和细菌种群结构有显著影响(理化参数p<0.05),但对活菌数量的影响并不显著(p>0.05).并且生物膜的理化指标、细菌数量并不是随水流剪切力的增大而简单地增大或减小,存在生物膜生长的最佳水流剪切力.在水流剪切力为0.8 Pa下生物膜生物量最大,每平方厘米管壁细菌总数高达2.10×109个,而在水流剪切力为0.05 和2.5 Pa下每平方厘米管壁细菌总数分别为2.20×108和2.27×108个.

Abstract:
A full scale, non circulated experimental facility with ductile cast iron pipes was used to simulate the growth of biofilm. The physicochemical properties of biofilm were analyzed by total solid (TS), volatile solid (VS) and chemical oxygen demand (COD). Real time fluorescence quantification PCR and RT PCR were used to count the numbers of total bacteria and viable bacteria, respectively. High throughput sequencing (454 Pyrosequencing) was also used to study the microbial diversity of biofilm. The results show that shear stress has an obvious influence on the physico chemical parameters, total bacteria and bacterial communities of biofilm (p<0.05) but weak influence on viable bacteria (p>0.05). The physico chemical parameters and bacterial quantity of biofilm don’t simply increase or decrease with a same tendency as shear stress increases. An optimal shear stress exists for biofilm to develop on pipe inner walls in DWDS.The number of total bacteria in biofilm under 0.8 Pa shear stress is the largest, which is up to 2.10×109 per square centimetre, while under 0.05  Pa and 2.5 Pa shear stres the number is 2.20×108 and 2.27×108 per square centimetre, respectively.
出版日期: 2016-02-01
:  TU 991.21  
基金资助:

国家自然科学基金面上资助项目(51378455); 国家“863”高技术研究发展计划资助项目(2012AA062608); 水体污染控与治理国家科技重大专项资助项目(2012ZX07403 003).

作者简介: 柳景青(1972—),男,研究员,从事管网生物安全研究. ORCID: 0000 0001 5596 0365. E-mail: liujingqing@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

柳景青, 罗志逢, 周晓燕, 何晓芳, 任红星, 胡宝兰, 裘尚德. 水流剪切力对供水管道管壁生物膜生长的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.08.

LIU Jing qing, LUO Zhi feng, ZHOU Xiao yan, HE Xiao fang,REN Hong xing, HU Bao lan, QIU Shang de. Influence of shear stress on growth of biofilm attached to drinking water distribution pipes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.08.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.08        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/250

[1] SIMOES L C, SIMOES M, OLIVEIRA R, et al. Potential of the adhesion of bacteria isolated from drinking water to materials [J]. Journal of Basic Microbiology, 2007, 47(2): 174-183.
[2] CHARACKLIS W G. Bioengineering report: Fouling biofilm development: A process analysis[J]. Biotechnology and Bioengineering, 1981, 23(9): 1923-1960.
[3] LECHEVALLIER M W, BABCOCK T M, LEE R G. Examination and characterization of distribution system biofilms[J]. Applied and Environmental Microbiology, 1987, 53(12): 2714-2724.
[4] PAUL E, OCHOA J C, PECHAUD Y, et al. Effect of shear stress and growth conditions on detachment and physical properties of biofilms[J]. Water Research, 2012, 46(17): 5499-5508.
[5] DOUTERELO I, SHARPE R L, BOXALL J B. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system [J]. Water Research, 2013, 47(2): 503-516.
[6] ROCHEX A, GODON J, BERNET N, et al. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities[J]. Water Research, 2008, 42(20): 4915-4922.
[7] CHRISTENSEN B E, Characklis, W G. Physical and chemical properties of biofilms[M]. New York: John Wiley, 1990.
[8] 黄廷林,韩宏大,何文杰,等. 安全饮用水保障技术[M].北京:中国建筑工业出版社,2006.
[9] BRUGNONI L I, CUBITTO M A, LOZANO J E. Role of shear stress on biofilm formation of Candida krusei in a rotating disk system [J]. Journal of Food Engineering, 2011, 102(3): 266-271.
[10] PERCIVAL S L, KNAPP J S, WALES D S, et al. The effect of turbulent flow and surface roughness on biofilm formation in drinking water[J]. Journal of Industrial Microbiology & Biotechnology, 1999, 22(3): 152-159.
[11] OLLOS P J, HUCK P M, SLAWSON R M. Factors affecting biofilm accumulation in Model Distribution Systems [J]. Journal :American Water Works Association, 2003, 95(1): 87-97.
[12] LEHTOLA M J, LAXANDER M, MIETTINEN I T, et al. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes [J]. Water Research, 2006, 40(11): 2151-2160.
[13] PARK A, JEONG H, LEE J, et al. Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel [J]. BioChip Journal, 2011, 5(3): 236-241.
[14] DONLAN R M, PIPES W O. Selected drinking water characteristics and attached microbial population density [J]. Journal American Water Works Association, 1988, 80(11): 70-76.
[15] RAGAZZO P, NARDO M. Biofilm formation in surface distribution systems [C]∥ Conference Proceedings of the NSF International/WHO. Switzerland: [s. n.], 2002: 535-553.
[16] DOUTERELO I, HUSBAND S, BOXALL J B. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system [J]. Water Research, 2014: 54, 100-114.
[17] GIBBS R A S J. Assimilable organic carbon concentrations and bacterial numbers in a water distribution system [J]. Water Science and Technology, 1993, 3 4(27): 159166.
[18] 黄佳佳. 实际供水管道管壁生物膜菌落属性及其影响因素研究[D]. 杭州:浙江大学,2014: 13-14.
HUANG Jia jia. Properties and principal factors of biofilm in water supply system [D]. Hangzhou: Zhejiang University, 2014: 13-14.
[19] 国家环境保护总局.水和废水监测分析方法[M]. 北京:中国环境科学出版社,2002.
[20] EICHLER S, CHRISTEN R, HLTJE C, et al. Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA and DNA Based 16S rRNA gene fingerprinting [J]. Applied and Environmental Microbiology, 2005, 72(3): 1858-1872.
[21] EDWARDS M, PRUDEN A, FALKINHAM III J O, et al. Relationship between biodegradable organic matter and pathogen concentrations in premise plumbing[EB/OL]. (2013 06 23) [2015 05 18]. http: www.waterrf.org/Pages/Projects.aspx?PID=4251.
[22] SHEN L, LIU S, ZHU Q, et al. Distribution and diversity of nitrite dependent anaerobic methane oxidising bacteria in the sediments of the Qiantang River [J]. Microbial Ecology, 2014, 67(2): 341-349.
[23] 王薇,任红星,胡震超,等. 管材对供水管网生物膜微生物种群多样性的影响研究[J]. 环境科学学报,2014,35(3):699-704.
WANG Wei, REN Hong xing, HU Zhen chao, et al. Impact of pipe materials on bacterial population diversity in drinking water biofilm [J]. Acta Scientiae Circumstantiae, 2014, 35(3): 699704.
[24] WEISBURG W G, BARNS S M, PELLETIER D A, et al. 16S ribosomal DNA amplification for phylogenetic study.[J]. Journal of Bacteriology, 1991, 173(2): 697703.
[25] MUYZER G, De WAAL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA.[J]. Applied and Environmental Microbiology, 1993, 59(3): 695700.
[26] ANDERSON I C, PARKIN P I. Detection of active soil fungi by RT PCR amplification of precursor rRNA molecules [J]. Journal of Microbiological Methods, 2007, 68(2): 248-253.
[27] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high throughput community sequencing data [J]. Nature methods, 2010, 7(5): 335-336.
[28] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open source, platform independent, community supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
[29] STOODLEY P, YANG S, LAPPIN SCOTT H, et al. Relationship between mass transfer coefficient and liquid flow velocity in heterogenous biofilms using microelectrodes and confocal microscopy [J]. Biotechnology and Bioengineering, 1997, 56(6): 681-688.
[30] MANUEL C M, NUNES O C, MELO L F. Dynamics of drinking water biofilm in flow/non flow conditions [J]. Water Research, 2007, 41(3): 551-562.
[31] RITTMAN B E. The effect of shear stress on biofilm loss rate [J]. Biotechnology and Bioengineering, 1982, 24(2): 501-506.

No related articles found!