Please wait a minute...
浙江大学学报(工学版)
土木工程     
静钻根植抗拔桩承载性能数值模拟
周佳锦1,2,王奎华1,2,龚晓南1,2 ,张日红3,严天龙3
1. 浙江大学 滨海与城市岩土工程研究中心,浙江 杭州 310058; 2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058; 3. 中淳高科桩业股份有限公司,浙江 宁波 315000
Numerical simulation on  behavior of static drill rooted pile under tension
ZHOU Jia jin1,2, WANG Kui hua1,2, GONG Xiao nan1,2, ZHANG Ri hong3,YAN Tian long3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China,2. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310058, China; 3. ZCONE High tech Pile Industry Holdings Company Limited, Ningbo 315000, China
 全文: PDF(1833 KB)   HTML
摘要:

为了对静钻根植抗拔桩的承载性能进行研究,进行一组现场静载试验和有限元软件ABAQUS模拟计算.通过将模拟计算与现场实测荷载位移曲线进行对比验证所建立模型的可靠性.模拟结果表明:由于桩端水泥土扩大头的存在,静钻根植抗拔桩的荷载位移曲线比较平缓,桩端扩大头直径越大,桩基荷载位移曲线越平缓;桩周水泥土与桩端水泥土弹性模量的改变对静钻根植抗拔桩承载力的影响不大;在软土地区中桩侧摩阻力较小,静钻根植抗拔桩的抗拔承载力主要由桩端水泥土扩大头提供,增加桩身钻孔直径不利于静钻根植抗拔桩承载性能的发挥;桩端扩大头高度对静钻根植抗拔桩承载力影响不大,而静钻根植抗拔桩承载力随着扩大头直径的增加而增大.在实际工程中在保证桩端水泥土强度的前提下可以将桩端水泥土扩大头直径增加到2倍桩身钻孔直径.

Abstract:

A group of field tests and finite element software ABAQUS were used to investigate the uplift bearing capacity of the static drill rooted nodular pile. The numerical simulation result was verified to be reliable by being compared to the measured results. The simulation results show that the load displacement curve of the static drill rooted nodular pile under tension appears to be stable because of the existence of the enlarged pile base, moreover, the curve becomes more flat with the diameter of the enlarged pile base increasing. The modulus of the cemented soil along the shaft and the cemented soil at the enlarged base both have little influence on the uplift bearing capacity of the static drill rooted nodular pile. The uplift bearing capacity of the static drill rooted nodular pile is supported mainly by the enlarged pile base in soft soil areas where the amount of the skin friction is small, and to increase the diameter of the drilling hole along the shaft  will decrease the bearing capacity of the enlarged pile base. The height of the enlarged cemented soil base has little influence on the uplift bearing capacity of the static drill rooted nodular pile, while the uplift bearing capacity of the static drill rooted nodular pile will  increase with the diameter of the enlarged pile base increasing. As a result, the diameter of the enlarged base can be amplified to 2 times of the diameter of the drilling hole along the shaft on condition that the strength of the cemented soil is guaranteed.

出版日期: 2015-11-01
:  TU 47  
基金资助:

国家自然科学基金资助项目(51278450,51378464,51578498)

通讯作者: 王奎华,男,教授,博导.ORCID:0000 0002 9362 0326.     E-mail: zdwkh0618@zju.edu.cn
作者简介: 周佳锦(1989-),男,博士生,从事桩基工程及地基处理等方面的研究工作.ORCID:0000 0003 4267 1454. E-mail: zjjmuforever@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周佳锦,王奎华,龚晓南,张日红,严天龙. 静钻根植抗拔桩承载性能数值模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.11.014.

ZHOU Jia jin, WANG Kui hua, GONG Xiao nan, ZHANG Ri hong,YAN Tian long. Numerical simulation on  behavior of static drill rooted pile under tension. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.11.014.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.11.014        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2135

[1] NICOLA A D, RANDOLPH M F. Tensile and compressive shaft capacity of piles in sand[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(12): 1952-1973.
[2] ILAMPARUTHI K, DICKIN E A. The influence of soil reinforcement on the uplift behavior of belled piles embedded in sand[J]. Geotextiles & Geomembranes, 2001, 19(1): 1-22.
[3] 黄茂松, 郦建俊, 王卫东, 等. 开挖条件抗拔桩的承载力损失比分析[J]. 岩土工程学报, 2008, 30(9): 1291-1297.
HUANG Mao song, LI Jian jun, WANG Wei dong, et al. Loss ratio of bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1291-1297.
[4] 钱德玲.支盘桩抗压和抗拔特性的研究[J].岩土力学, 2003, 24(增刊2): 517-520.
QIAN De ling. A study of compression and extraction resistance behavior of squeezed supporting disk piles[J]. Rock and Soil Mechanics, 2003, 24(supple.2): 517-520.
[5] 赵明华, 李微哲, 单远铭, 等, DX桩抗拔承载机理及设计计算方法研究[J].岩土力学, 2006, 27(2) : 199-203.
ZHAO Ming hua, LI Wei zhe, SHAN Yuan ming, et al, Study on uplift mechanism and calculation of DX pile[J]. Rock and Soil Mechanics, 2006, 27(2): 199-203.
[6] 王卫东, 吴江斌, 王向军. 桩侧注浆抗拔桩的试验研究与工程应用[J]. 岩土工程学报, 2010, 32(增刊2): 284-289.
WANG Wei dong, WU Jiang bin, WANG Xiang jun. Full scale tests and application of side grouting uplift piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(supple.2): 284-289.
[7] 钱建固, 贾鹏, 程明进, 等. 注浆桩土接触面试验研究及后注浆抗拔桩承载特性数值分析[J]. 岩土力学, 2011, 32(增刊1): 662-668.
QIAN Jian gu, JIA Peng, CHENG Ming jin, et al. Experimental study of grouting pile soil interface and numerical simulation of bearing behavior of side grouting uplift pile [J]. Rock and Soil Mechanics, 2011, 32(supple.1): 662-668.
[8] DICKIN E A, LEUNG C F. Performance of piles with enlarged bases subject to uplift forces [J]. Canadian Geotechnical Journal, 1990, 27(5): 546-556.
[9] FLEMING W G K. The improvement of pile performance by base grouting [J]. Civil Engineering, 1993, 97(2): 88-93.
[10] 王卫东, 吴江斌, 许 亮, 等. 软土地区扩底抗拔桩承载特性试验研究[J]. 岩土工程学报, 2007, 29(9): 1418-1422.
WANG Wei dong, WU Jiang bin, XU Liang, et al. Full scale field tests on uplift behavior of piles with enlarged base [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1418-1422.
[11] ZHOU Jia jin, WANG Kui hua, GONG Xiao nan, et al. Bearing capacity and load transfer mechanism of a static drill rooted nodular pile in soft soil areas [J]. Journal of Zhejiang University SCIENCE A :Applied Physics & Engineering, 2013,14(10):705-719.
[12] 周佳锦, 龚晓南, 王奎华,等. 静钻根植竹节桩抗压承载性能 [J]. 浙江大学学报:工学版, 2014, 48(5): 835-842.
ZHOU Jia jin, Gong Xiao nan, Wang Kui hua, et al. Performance of static drill rooted nodular piles under compression [J]. Journal of Zhejiang University :Engineering Science, 2014, 48(5): 835-842.
[13] JGJ106 2003. 建筑桩基检测技术规范[S]. 北京: 中国建筑工业出版社, 2003.
JGJ106 2003. Building pile testing technology code[S]. Beijing: China Architecture and Building Press, 2003.
[14] 孙宇雁, 王子国. 水泥土抗剪强度试验研究[J]. 岩土工程界, 2009, 12(1): 68-70.
SUN Yu yan, WANG Zi guo. Experimental study of shear strength of cemented soil[J]. Geotechnical Engineering World, 2009, 12(1): 68-70.
[15]费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京:中国水利水电出版社, 2009.

[1] 郑凌逶, 谢新宇, 谢康和, 李金柱, 刘亦民. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073.
[2] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[3] 项国圣, 方圆, 徐永福. 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 931-936.
[4] 邹圣锋, 李金柱, 王忠瑾, 兰璐, 王文军, 谢新宇. 基于GDS渗透仪的渗透试验及经验模型[J]. 浙江大学学报(工学版), 2017, 51(5): 856-862.
[5] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[6] 胡亚元. 非饱和多孔岩石的热力学本构理论[J]. 浙江大学学报(工学版), 2017, 51(2): 255-263.
[7] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[8] 袁炳祥, 吴跃东, 陈锐, 冯仲文, 汪亦显. 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 2031-2036.
[9] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[10] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[11] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[12] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[13] 胡亚元, 杨秋华. YinGraham流变模型沉降简化计算统一公式[J]. 浙江大学学报(工学版), 2016, 50(6): 1009-1017.
[14] 陈仁朋,孟凡衍,李忠超,叶跃鸿,胡琦. 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报(工学版), 2016, 50(5): 856-863.
[15] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.