Please wait a minute...
J4  2013, Vol. 47 Issue (4): 680-686    DOI: 10.3785/j.issn.1008-973X.2013.04.018
能源工程     
太阳能光电催化还原CO2的最新研究进展
吴改, 程 军, 张梦, 周俊虎, 岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Research progress of CO2 photoelectrocatalysis
WU Gai, CHENG Jun, ZHANG Meng, ZHOU Jun-hu, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了将温室气体CO2进行资源化利用,综述了太阳能转化CO2制取高值化工品和替代燃料的最新研究进展.介绍光电催化还原CO2的反应原理,指出与其他转化方式相比的优势.对于光催化与电化学的耦合反应体系、p型半导体催化剂、过渡金属催化剂、配合物催化剂如金属-四氮杂大环及吡啶型配合物、反应评价指标如反应过电位、法拉第电流效率以及电流密度等方面的国际最新研究进展进行重点评述.总结了CO2光电催化过程中的热力学和动力学难题,从中间态产物势能分布的角度对该问题的解决方案提出了建议.

Abstract:

In order to reutilize greenhouse gas CO2 as resource, the latest research progress of high-value chemicals and alternative fuels produced from CO2 using solar energy was reviewed. Reaction mechanisms and technical advantages of CO2 photoelectrocatalysis were introduced. Coupled reaction systems of photocatalytic and electrocatalytic reduction, p-type semiconductor photocatalysts, transition metal and complexes eletrocatalysts (e.g. tetraazamacrocycle and pyridine complexes), key indicators (e.g. overpotential, Faradaic efficiency and current density) were comprehensively discussed based on the latest literatures. The thermodynamic and kinetic challenges of CO2 photoelectrocatalytic reaction were summarized. It was proposed to study energy landscapes of intermediates formed in CO2 electrochemical reduction to solve these problems.

出版日期: 2013-04-01
:  TK 511  
基金资助:

 国家自然科学基金资助项目(51176163);国家“863”高技术研究发展计划资助项目(2012AA050101).

通讯作者: 程军,男,教授,博导.     E-mail: juncheng@zju.edu.cn
作者简介: 吴改(1987—),男,硕士生,从事太阳能光电还原CO2制化工品研究.E-mail:21027133@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴改, 程 军, 张梦, 周俊虎, 岑可法. 太阳能光电催化还原CO2的最新研究进展[J]. J4, 2013, 47(4): 680-686.

WU Gai, CHENG Jun, ZHANG Meng, ZHOU Jun-hu, CEN Ke-fa. Research progress of CO2 photoelectrocatalysis. J4, 2013, 47(4): 680-686.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.04.018        http://www.zjujournals.com/eng/CN/Y2013/V47/I4/680

[1] ROY S C, VARGHESE O K, PAULOSE M, et al. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons[J]. Acs Nano, 2010, 4(3): 1259-1278.

[2] HOFFMANN M R, MOSS J A, BAUM M M. Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds[J]. Dalton Transactions, 2011, 40(19): 5151-5158.

[3] CENTI G, PERATHONER S. Towards solar fuels from water and CO2[J]. Chemsuschem, 2010, 3(2): 195-208.

[4] DE RICHTER R, CAILLOL S. Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O-3, BC and other major contributors to climate change[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2011, 12(1): 1-19.

[5] OLAH G A, GOEPPERT A, PRAKASH G K S. Chemical recycling off carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons [J]. Journal of Organic Chemistry, 2009, 74(2): 487-498.

[6] GALVEZ M E, LOUTZENHISER P G, HISCHIER I, et al. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: thermodynamic analysis [J]. Energy and Fuels, 2008, 22(5): 3544-3550.

[7] GATTRELL M, GUPTA N, CO A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J]. Journal of Electroanalytical Chemistry, 2006, 594(1): 1-19.

[8] XIA X H, JIA Z H, YU Y, et al. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O [J]. Carbon, 2007, 45(4): 717-721.

[9] BARTON E E, RAMPULLA D M, BOCARSLY A B. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell[J]. Journal of the American Chemical Society, 2008, 130(20): 6342-6344.

[10] SUTIN N, CREUTZ C, FUJITA E. Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes [J]. Comments on Inorganic Chemistry, 1997, 19(2): 67-92.

 

[11] BENSON E E, KUBIAK C P, SATHRUM A J, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J]. Chemical Society Reviews, 2009, 38(1): 89-99.

[12] KUMAR B, LLORENTE M, FROEHLICH J, et al. Photochemical and photoelectrochemical reduction of CO2[J]. Annual Review of Physical Chemistry, 2012, 63: 541-569.

[13] GRATZEL M. Photoelectrochemical cells [J]. Nature, 2001, 414(6861): 338-344.

[14] BOCARSLY A B, BOOKBINDER D C, DOMINEY R N, et al. Photo-reduction at illuminated p-type semiconducting silicon photoelectrodes-evidence for fermi level pinning [J]. Journal of the American Chemical Society, 1980, 102(11): 3683-3688.

[15] WALTER M G, WARREN E L, MCKONE J R, et al. Solar water splitting cells [J]. Chemical Reviews, 2010, 110(11): 6446-6473.

[16] HALMANN M. Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells[J]. Nature, 1978, 275(5676): 115-116.

[17] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon-dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698): 637-638.

[18] CENTI G, PERATHONER S. Catalysis: role and challenges for a sustainable energy [J]. Topics in Catalysis, 2009, 52(8): 948-961.

[19] LATEMPA T J, RANI S, BAO N Z, et al. Generation of fuel from CO2 saturated liquids using a p-Si nanowire parallel to n-TiO2 nanotube array photoelectrochemical cell[J]. Nanoscale, 2012, 4(7): 2245-2250.

[20] SATO S, ARAI T, MORIKAWA T, et al. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts [J]. Journal of the American Chemical Society, 2011, 133(39): 15240-15243.

[21] YAMANE S, KATO N, KOJIMA S, et al. Efficient solar water splitting with a composite “n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2” semiconductor electrode[J]. Journal of Physical Chemistry C, 2009, 113(32): 14575-14581.

[22] LEITNER W. The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey [J]. Coordination Chemistry Reviews, 1996, 153: 257-284.

[23] HINOGAMI R, NAKAMURA Y, YAE S, et al. An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles [J]. Journal of Physical Chemistry B, 1998, 102(6): 974-980.

[24] KANECO S, KATSUMATA H, SUZUKI T, et al. Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes [J]. Applied Catalysis B-Environmental, 2006, 64(1/2): 139-145.

[25]  KANECO S, UENO Y, KATSUMATA H, et al. Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol[J]. Chemical Engineering Journal, 2009, 148(1): 57-62.

[26] KUMAR B, SMIEJA J M, KUBIAK C P. Photoreduction of CO2 on p-type silicon using re(bipy-Bu′)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO [J]. Journal of Physical Chemistry C, 2010, 114(33): 14220-14223.

[27] ARAI T, SATO S, UEMURA K, et al. Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex[J]. Abstracts of Papers of the American Chemical Society, 2010, 46: 6944-6946.

[28] HIROTA K, TRYK D A, YAMAMOTO T, et al. Photoelectrochemical reduction of CO2 in a high-pressure CO2 plus methanol medium at p-type semiconductor electrodes [J]. Journal of Physical Chemistry B, 1998, 102(49): 9834-9843.

[29] KANECO S, KATSUMATA H, SUZUKI T, et al. Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol [J]. Chemical Engineering Journal, 2006, 116(3): 227-231.

[30] FLAISHER H, TENNE R, HALMANN M. Photoelectrochemical reduction of carbon dioxide in aqueous solutions on p-GaP electrodes: an ac impedance study with phase-sensitive detection [J]. Journal of Electroanalytical Chemistry, 1996, 402(1/2): 97-105.

[31] HAWECKER J, LEHN J M, ZIESSEL R. Photochemical and electrochemical reduction of carbon-dioxide to carbon-monoxide mediated by (2,2′-bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts [J]. Helvetica Chimica Acta, 1986, 69(8): 1990-2012.


[32] MIKKELSEN M, JORGENSEN M, KREBS F C. The teraton challenge: a review of fixation and transformation of carbon dioxide [J]. Energy and Environmental Science, 2010, 3(1): 43-81.

[33] NAKATO Y, TSUBOMURA H. Silicon photoelectrodes modified with ultrafine metal islands [J]. Electrochimica Acta, 1992, 37(5): 897-907.

[34] LE M, REN M, ZHANG Z, et al. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces[J]. Journal of the Electrochemical Society, 2011, 158(5): 45-49.

[35] RAETHER H. Surface-Plasmons on smooth and rough surfaces and on gratings [J]. Springer Tracts in Modern Physics, 1988, 111: 1-133.

[36] SCHAADT D M, FENG B, YU E T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles [J]. Applied Physics Letters, 2005, 86(6): 06310601-3.

[37] BRADLEY M G, TYSAK T. P-Type silicon based photoelectrochemical cells for optical energy conversion: electrochemistry of tetra-azomacrocyclic metal complexes [J]. Journal of Electroanalytical Chemistry, 1982, 135: 153-157.

[38] BELEY M, COLLIN J P, SAUVAGE J P, et al. Photoassisted electro-reduction of CO2 on para-gaas in the presence of Ni cyclam2+ [J]. Journal of Electroanalytical Chemistry, 1986, 206(1/2): 333-339.

[39] FROEHLICH J D, KUBIAK C P. Homogeneous CO2 reduction by Ni(cyclam) at a glassy carbon electrode [J]. Inorganic Chemistry, 2012, 51(7): 3932-3934.

[40] KUMAR B, SMIEJA J M, KUBIAK C P. Photo-reduction of CO2 on p-type silicon using Re(bipy-Bu-t)(CO)3Cl: Photovoltages exceeding 600 mV for the selective reduction of CO2 to CO [J]. Abstracts of Papers of the American Chemical Society, 2010,114(33): 14220-14223.

[41] KEITH J A, CARTER E A. Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2 [J]. Journal of the American Chemical Society, 2012, 134(18): 7580-7583.

[42] SODERGREN S, HAGFELDT A, OLSSON J, et al. Theoretical-models for the action spectrum and the current-voltage characteristics of microporous semiconductor-films in photoelectrochemical cells [J]. Journal of Physical Chemistry, 1994, 98(21): 5552-5556.

[43] BARD A J, FAULKNER L R. Electrochemical methods: fundamentals and applications [M]. \
[S.l.\]: Wiley, 2000.

No related articles found!