Please wait a minute...
J4  2013, Vol. 47 Issue (2): 378-384    DOI: 10.3785/j.issn.1008-973X.2013.02.028
土木工程     
基于Floquet理论的储液罐动力稳定性分析
杨宏康, 高博青
浙江大学,空间结构研究中心,浙江 杭州,310058
Dynamic stability analysis of liquid storage tanks based on
Floquet theory
YANG Hong-kang, GAO Bo-qing
Spatial Structure Research Center, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

为确定储液罐动力不稳定现象与激励参数间的关系,采用附加质量矩阵考虑流固耦合效应,以周期变化的几何刚度矩阵考虑壳体应力变化,由位移-压力格式的流固耦合方程建立储液罐在简谐地面加速度下的动力稳定性方程.利用模态截断法降阶上述方程,并基于Floquet理论求解,从而递归搜寻由激励参数描述的动力不稳定边界.利用上述Floquet方法分析Chiba试验模型,并基于B-R准则复核该结果.结果表明,Floquet方法求得的动力不稳定边界与Chiba试验较一致,并与B-R法结果吻合良好.Floquet方法可显著提高动力不稳定边界的求解效率,并消除壳体振型半波假定的影响.

Abstract:

To determine the relationship between dynamic instability phenomenon of liquid storage tanks and excitation parameters, from fluid-solid coupling equations with displacement-pressure form, the dynamic stability equations were established for liquid storage tanks under harmonic ground acceleration, in which the fluid-solid coupling effect was considered with added mass matrix and the shell stress change was considered with period-varying geometric stiffening matrix. After order reduction by modal truncation method, above equations were then solved based on Floquet theory to recursively search for the dynamic instability boundary described by the excitation parameters. The Chiba test models were analyzed by the proposed Floquet method, and the analysis results were reexamined based on B-R criterion. The results show that, the dynamic instability boundaries obtained by the Floquet method were consistent with Chiba test results, and agreed well with the estimates of B-R method. Floquet method can obviously improve the computational efficiency of dynamic instability boundary and eliminates the influence of half-wave assumption of shell vibration modes.

出版日期: 2013-02-01
:  TU 33  
基金资助:

国家自然科学基金资助项目(51178414);浙江省自然科学基金资助项目(Y1110438).

通讯作者: 高博青,男,教授,博导.     E-mail: bqgao@zju.edu.cn
作者简介: 杨宏康(1986—),男,博士生,从事钢结构和空间结构的研究. E-mail: hongkangyang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨宏康, 高博青. 基于Floquet理论的储液罐动力稳定性分析[J]. J4, 2013, 47(2): 378-384.

YANG Hong-kang, GAO Bo-qing. Dynamic stability analysis of liquid storage tanks based on
Floquet theory. J4, 2013, 47(2): 378-384.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.02.028        http://www.zjujournals.com/eng/CN/Y2013/V47/I2/378

[1] AISWAL O R, RAI D C, JAIN S K. Review of seismic codes on liquid-containing tanks [J]. Earthquake Spectra, 2007, 23: 239.
[2] CHEN Zhi-ping, SUN Bo, YU Chu-lin, et al. Comparison of the strength design and prevention method of elephant foot buckling among countries’ standards of oil tanks [C]∥ Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Prague: ASME, 2009: 461-466.
[3] COOPER T W. A study of the performance of petroleum storage tanks during earthquakes, 1933-1995 [R]. Gaithersburg, MD: National Institute of Standards and Technology, 1997.
[4] 温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展 [J].力学进展,1995(1): 60-76.
WEN De-chao, ZHENG Zhao-chang, SUN Huan-chun. Development of aseismic research on liquid storage tanks [J]. Advances in Mechanics, 19951): 60-76.
[5] CHIBA M, TANI J, HASHIMOTO H, et al. Dynamic stability of liquid-filled cylindrical shells under horizontal excitation, part I: experiment [J]. Journal of sound and vibration, 1986, 1042): 301-319.
[6] CHIBA M, TANI J, YAMAKI N. Dynamic stability of liquid-filled cylindrical shells under vertical excitation, part I: experimental results [J]. Earthquake Engineering & Structural Dynamics, 1987, 151): 23-36.
[7] FUKUYAMA M, NAKAGAWA M, ISHIHAMA K, et al. Dynamic buckling experiments of fluid-structure-coupled co-axial thin cylinder [J]. Nuclear Engineering and Design. 1999, 188(1): 13-26.
[8] BUDIANSKY B, BOTH R S. Axisymmetric dynamic buckling of clamped shallow spherical shells [C]∥ Collected Papers on Instability of Shell Structures. Washington: NASA TND-1510, 1962: 597-606.
[9] VIRELLA J C, GODOY L A, SUAREZ L E. Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation [J]. Journal of Constructional Steel Research, 2006, 626): 521-531.5
[10] TSUKIMORI K, LIU W K, URAS R A. Formulation of dynamic stability of fluid-filled shells [J]. Nuclear engineering and design, 1993, 1422-3): 267-297.
[11] TSUKIMORI K, LIU W K, TSAO Y H, et al. Dynamic stability characteristics of fluid-filled shells under multiple excitations [J]. Nuclear Engineering and Design, 1993, 1422-3): 299-318.
[12] TAKAYANAGI M. Parametric resonance of liquid storage axisymmetric shell under horizontal excitation [J]. Journal of Pressure Vessel Technology, 1990, 113: 511-516.
[13] AMABILI M. Nonlinear vibrations and stability of shells and plates [M]. New York: Cambridge University Press, 2008: 146-148.
[14] TAKAHASHI K. An approach to investigate the instability of the multiple-degree-of-freedom parametric dynamic systems [J]. Journal of sound and Vibration, 1981, 784): 519-529.
[15] ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. The finite element method: its basis and fundamentals [M]. 6th ed. Oxford: Butterworth Heinemann, 2005: 631-644.
[16] CHOPRA A K. Dynamics of structures : theory and applications to earthquake engineering [M]. 3rd ed. New Jersey: Prentice-Hall, 2007: 300-535.
[17] 凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社, 2004: 156.
[18] VIRELLA J C, GODOY L A, SUAREZ L E. Fundamental modes of tank-liquid systems under horizontal motions [J]. Engineering Structures, 2006, 2810): 1450-1461.
[19] PETYT M. Introduction to finite element vibration analysis [M]. Cambridge: Cambridge University Press, 1990: 475.
[20] YAKUBOVICH V A, STARZHINSKII V M. Linear differential equations with periodic coefficients [M]. New York: John Wiley&Sons, 1975: 88-91.
[21] WARD I M, SWEENEY J. An introduction to the mechanical properties of solid polymers [M]. Chichester: John Wiley&Sons, 2004: 31-55.
[22] TENG J G, ROTTER J M. Buckling of thin metal shells [M]. London: Spon Press, 2004: 48-52.

[1] 关富玲, 钱利锋. 新型陆基充气球天线力学分析与测试[J]. J4, 2012, 46(2): 257-262.
[2] 杨鸿, 杨代恒, 赵阳. 钢筒仓散料静态压力的三维有限元模拟[J]. J4, 2011, 45(8): 1423-1429.
[3] 鲍侃袁, 沈国辉, 孙炳楠. 双曲冷却塔的脉动风荷载模拟和风致响应[J]. J4, 2010, 44(5): 955-961.