Please wait a minute...
J4  2013, Vol. 47 Issue (12): 2125-2131    DOI: 10.3785/j.issn.1008-973X.2013.12.008
土木工程     
聚氨酯夹芯屋面板的风致动力性能分析
邓华1, 黄莉1,2, 王宸1
1.浙江大学 空间结构研究中心,浙江 杭州 310058; 2. 浙江财经大学 工程管理系,浙江 杭州 310018
Analysis on wind-induced dynamic behaviors of polyurethane sandwich roof panels
DENG Hua1, HUANG Li1,2, WANG Chen1
1. Space Structures Research Center, Zhejiang University, Hangzhou 310058, China; 2. Engineering Management Department, Zhejiang University of Finance and Economics, Hangzhou 310018, China
 全文: PDF  HTML
摘要:

聚氨酯夹芯屋面板广泛应用于大跨度结构的屋盖系统中,其有限刚度及聚氨酯芯层的阻尼性能会对屋面风压传递过程的脉动特性造成影响.试验测定了屋面板常用聚氨酯泡沫夹芯材料的基本力学参数和反映材料阻尼特性的损耗因子.以一典型檩距的四角点简支矩形屋面板为算例,采用模态应变能法对该屋面板的结构损耗因子进行了计算.进一步对该屋面板模型施加人工模拟的风压时程,并与无阻尼刚性板和低阻尼柔性板模型的反力时程及其功率谱进行对比,考察了屋面板刚度和阻尼性能对风压脉动特性的影响程度.结果表明:屋面板的实际有限刚度对风压的脉动分量有放大作用,且改变了脉动风压的频谱特性,而聚氨酯夹芯的阻尼性能却能有效降低脉动风压的放大幅值.

Abstract:

Polyurethane sandwich panel is widely used as the roof covering of large-span structures. Its finite stiffness and damping properties of polyurethane core would make substantial effects on the properties of the fluctuating wind pressure when transmitted by the roof panel. Experimental tests were carried out to determine the basic mechanical parameters of the polyurethane core normally used in metal roof panels, and the loss factor indicating its damping properties was also measured. A rectangular roof panel, which was pin-supported at four corners with a typical supporting distance of purlins, was employed as an illustrative example. The structural loss factor of this roof panel was calculated by the modal strain energy method. An artificial wind pressure was further applied on this roof panel, and the time history of reaction force and its power spectrum were calculated and compared with those of another two models, the undamped rigid panel and the underdamped elastic panel. The effects of its stiffness and damping property on the properties of fluctuating wind pressure were investigated. The results reveal that the finite stiffness of the roof panel can not only lead an amplification of fluctuating wind pressure, but also change its spectral properties. However, the damping property of polyurethane core can effectively reduce the amplifying magnitude of the fluctuating wind.

出版日期: 2013-12-01
:  TU 393.3  
作者简介: 邓华(1971—),男,教授,从事空间结构和钢结构研究. E-mail: denghua@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

邓华, 黄莉, 王宸. 聚氨酯夹芯屋面板的风致动力性能分析[J]. J4, 2013, 47(12): 2125-2131.

DENG Hua, HUANG Li, WANG Chen. Analysis on wind-induced dynamic behaviors of polyurethane sandwich roof panels. J4, 2013, 47(12): 2125-2131.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.12.008        http://www.zjujournals.com/eng/CN/Y2013/V47/I12/2125

[1] 中华人民共和国住房和城乡建设部.JG/T314-2012聚氨酯硬泡复合保温板[S].北京:中国标准出版社,2012.

Ministry of Housing and Urban-Rural Construction of China. JG/T 314-2012Composite insulation panels made of polyurethane rigid foam[S].

Beijing: China Standard Press, 2012.

[2] 中国建筑材料工业协会.GB/T11835-2007绝热用岩棉、矿渣棉及其制品[S].北京:中国标准出版社,2007.

Chinese Building Materials lndustry Association. GB/T11835-2007Rock wool, slag wool and it’s products for thermal insulation[S]. Beijing:

China Standard Press, 2012.

[3] 中国轻工业联合会.GB9641-88硬质泡沫塑料拉伸性能试验方法[S].北京:中国标准出版社,1988.

China National Light Industry Council. GB9641-88Test method for tensile properties of rigid cellular plastics[S]. Beijing: China Standard

Press, 1988.

[4] 邓友娥,章文贡.动态机械热分析技术在高聚物性能研究中的应用[J].实验室研究与探索,2002(1): 38-39.

DENG You-e, ZHANG Wen-gong. Application of dynamic mechanical thermal analyses technique in polymer research[J]. Laboratory Research,2002

(1): 38-39.

[5] UNGAR E E, KERWIN E M J. Loss factors of viscoelastic systems in terms of energy concepts [J]. The Journal of the Acoustical Society

of America, 1962, 34(7): 954-957.

[6] JOHNSON C D, KIENHOLZ DA. Finite element prediction of damping in structures with constrained viscoelastic layers[J].AIAA Journal,

1963, 20(9): 1284-1290.

[7] TSAI M H, CHANG K C. A study on modal strain energy method for viscoelastically damped structures[J]. Journal of the Chinese

Institute of Engineers, 2001,24(3): 311-320.

[8] 戴德沛.阻尼减振降噪技术[M].西安:西安交通大学出版社,1986: 1653.

[9] 罗忠,朱锡,梅志远,等.夹芯复合材料结构阻尼特性研究[J].振动与冲击,2008(11): 134-136.

LUO Zhong, ZHU Xi,MEI Zhi-yuan, et al. Studies on the damping property of sandwich structures with composite material core[J]. Journal of

Vibration and Shock , 2008(11): 134-136.

[10] 舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,9(4): 27-32.

SHU Xin-ling, ZHOU Dai. AR model of wind speed time series and its rapid implementation[J]. Spatial Structures , 2003,9(4): 27-32.

[11] CLOUGH R W, PENZIEN J. Dynamics of structures [M]. 3rd ed. New York: Computers & Structures, Inc, 1995.

[1] 王琼,邓华. 罕遇地震下弦支穹顶的弹塑性动力响应分析[J]. J4, 2013, 47(11): 1889-1895.
[2] 苏亮,索靖. 等效线性化方法在基于位移抗震设计中的应用[J]. J4, 2013, 47(11): 1926-1931.
[3] 张成,李志安,高博青,董石麟. 基于H∞理论的网壳结构鲁棒性分析[J]. J4, 2013, 47(5): 818-823.
[4] 张民锐, 邓华, 刘宏创, 董石麟, 张志宏, 陈玲秋. 月牙形索桁罩棚结构的静力性能模型试验[J]. J4, 2013, 47(2): 367-377.
[5] 何江飞,高博青. 桁架结构的易损性评价及破坏场景识别研究[J]. J4, 2012, 46(9): 1633-1637.
[6] 吴慧,岑迪钦,高博青. 刚性索穹顶结构的近似优化与性能分析[J]. J4, 2011, 45(11): 1966-1971.
[7] 邓华,宋荣敏,卓新,楼道安. 预应力杆系结构的张力偏差监测及补偿[J]. J4, 2011, 45(7): 1269-1275.
[8] 许国杰,卓新,寿全根,裘黎明,樊烽. TH-Levy型索穹顶局部构件失效时的受力性能[J]. J4, 2011, 45(7): 1281-1287.
[9] 张成,吴慧,高博青,汪毅俊. 基于模糊聚类的网架结构动力失效模式识别[J]. J4, 2011, 45(7): 1276-1280.
[10] 邓华,程军,蒋本卫,楼道安. 索杆张力结构的构件长度误差效应[J]. J4, 2011, 45(1): 68-74.