Please wait a minute...
J4  2011, Vol. 45 Issue (1): 173-177    DOI: 10.3785/j.issn.1008-973X.2011.01.030
电气工程     
基于Root-MUSIC和Adaline神经网络的
间谐波参数估计
陈国志,蔡忠法,陈隆道
浙江大学 电气工程学院,浙江 杭州 310027
Interharmonic parameter estimation based on Root-MUSIC and
Adaline neural network
CHEN Guo-zhi, CAI Zhong-fa, CHEN Long-dao
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了提高电力系统间谐波分析的精度和分辨率,提出基于求根多重信号分类法(root-MUSIC)和自适应线性神经网络的间谐波参数估计方法.该算法利用求根多重信号分类法估计信号中谐波和间谐波的个数及频率,将谐波和间谐波的频率作为Adaline神经网络的输入进行学习,用得到的权值确定谐波和间谐波的幅值和相位;将频率作为权值在改进的Adaline神经网络中参与学习,估计谐波和间谐波的频率、幅值和相位.Matlab仿真结果表明,该算法频率分辨率高、检测准确、收敛快;当频率估计准确时,基本Adaline神经网络与改进的Adaline神经网络具有相近的检测精度,且前者的实时性更好.

Abstract:

 An interharmonic parameter estimation algorithm based on root-multiple signal classification(MUSIC) and Adaline neural network was proposed in order to improve the analyzed precision and frequency resolution of the interharmonic in power system.  RootMUSIC algorithm was used to obtain the number and frequencies of the harmonics and interharmonics, and the frequencies were inputted into Adaline neural network for learning. Then the amplitudes and phases of the harmonics and interharmonics were estimated by using the weights. The frequencies were treated as the weights to be adjusted in the improved Adaline neural network in order to estimate the frequencies as well as the amplitudes and phases of the harmonics and interharmonics. The Matlab simulation results verified the  algorithm has the characteristics of high frequency resolution, detect accuracy and fast convergence. When the estimation of frequency is accurate, the Adaline neural network and its improved method have closely precision, and the real-time property of the former is better.

出版日期: 2011-03-03
:  TM 714  
基金资助:

浙江省教育厅科研资助项目(Y200803502).

通讯作者: 蔡忠法,男,讲师.     E-mail: zdczf@hotmail.com
作者简介: 陈国志(1977-),男,辽宁盘锦人,博士生,从事电能质量分析和数字信号处理等研究.E-mail: chenguozhi@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈国志,蔡忠法,陈隆道. 基于Root-MUSIC和Adaline神经网络的
间谐波参数估计[J]. J4, 2011, 45(1): 173-177.

CHEN Guo-zhi, CAI Zhong-fa, CHEN Long-dao. Interharmonic parameter estimation based on Root-MUSIC and
Adaline neural network. J4, 2011, 45(1): 173-177.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.01.030        http://www.zjujournals.com/eng/CN/Y2011/V45/I1/173

[1] YACAMINI R. Power system harmonics. IV. interharmonic [J]. Power Engineering Journal, 1996, 10(4): 185-193.
[2] TESTA A, AKRAM M F, BURCH R, et al. Interharmonics: theory and modeling [J]. IEEE Transactions on Power Delivery, 2007, 22(4): 2335-2348.
[3] 林海雪.电力系统中的间谐波问题[J].供用电,2001,18(3): 6-9.
LIN Haixue. Interhatmonic in electrical power system [J]. Distribution and Utilization, 2001, 18(3): 6-9.
[4] QIAN H, ZHAO R, CHEN T. Interharmonics analysis based on interpolating windowed FFT algorithm [J]. IEEE Transactions on Power Delivery, 2007, 22(2): 1064-1069.
[5] GALLO D, LANGELLA R, TESTA A. Desynchronized processing technique for harmonic and interharmonic analysis [J]. IEEE Transactions on Power Delivery, 2004, 19(3): 993-1001.
[6] 薛蕙,杨仁刚. 基于连续小波变换的非整数次谐波测量方法[J].电力系统自动化,2003,27(5): 49-53.
XUE Hui, YANG Rengang. A novel method for noninteger harmonics measurement using continuous wavelet transform [J]. Automation of Electric Power Systems, 2003, 27(5): 49-53.
[7] LOBOS T, KOZINA T, KOGLIN H J. Power system harmonics estimation using linear least squares method and SVD [J]. IEE Proceedings of Generation, Transmission and Distribution, 2001, 148(6): 567-572.
[8] 陈隆道,陈云. 间谐波频率分量的频域奇异值算法[J]. 浙江大学学报:工学版,2004,38(4):470-473.
CHEN Longdao, CHEN Yun. SVD algorithm in frequency domain for frequency component of interharmonics [J]. Journal of Zhejiang University: Engineering Science, 2004, 38(4): 470-473.

[9] LOBOS T, LEONOWICZ Z, REZMER J, et al. Highresolution spectrumestimation methods for signal analysis in power systems [J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(1): 219-225.
[10] 高培生,谷湘文,吴为麟. 基于求根多重信号分类和遗传算法的谐波间谐波频谱估计[J]. 电工技术学报,2008,23(6):109-113.
GAO Peisheng, GU Xiangwen, WU Weilin. Harmonic and interharmonic spectrum estimation based on rootMUSIC and GA [J]. Transaction of China Electrotechnical Society, 2008,23(6):109-113.
[11] 石敏,吴正国,尹为民. 基于多信号分类法和普罗尼法的间谐波参数估计[J]. 电网技术,2005,29(15):81-84.
SHI Min, WU Zhengguo, YIN Weimin. Interharmonic parameter estimation based on multisignal classification and Prony method [J]. Power System Technology, 2005,29(15):81-84.
[12] DASH P K, SWAIN D P, LIEW A C, et al. An adaptive linear combiner for online tracking of power system harmonics [J]. IEEE Transactions on Power Systems, 1996, 11(4): 1730-1735.
[13] 向东阳,王公宝,马伟明,等. 基于FFT和神经网络的非整数次谐波检测方法[J]. 中国电机工程学报,2005,25(9):35-39.
XIANG Dongyang, WANG Gongbao, MA Weiming, et al. A new method for noninteger harmonics measurement based on FFT algorithm and neural network [J]. Proceedings of the CSEE, 2005, 25(9): 35-39.
[14] 王公宝,向东阳,马伟明. 基于FFT和神经网络的非整数次谐波分析改进算法[J]. 中国电机工程学报,2008, 28(4): 102-108.
WANG Gongbao, XIANG Dongyang, MA Weiming. Improved algorithm for noninteger harmonics analysis based on FFT algorithm and neural network [J]. Proceedings of the CSEE, 2008, 28(4): 102-108.
[15] 蔡忠法,陈隆道. 基于AR谱估计和ADALINE神经元的间谐波分析[J]. 电力系统自动化,2007,31(17):78-82.
CAI Zhongfa, CHEN Longdao. Interharmonic analysis based on AR spectral estimation and Adaline neural network [J]. Automation of Electric Power Systems, 2007, 31(17): 78-82.
[16] MAHATA K. Spectrum estimation, Notch filters, and MUSIC [J]. IEEE Transaction on Signal Processing, 2005, 53(10): 3727-3737.
[17] WIDROW B, LEHR M A. 30 years of adaptive neural networks: perceptron, madaline, and backpropagation [J]. Proceedings of the IEEE, 1990, 78(9): 1415-1442.

[1] 文昊翔,陈隆道,蔡忠法. 解相关仿射投影算法及应用[J]. J4, 2014, 48(1): 136-140.
[2] 陈国志, 陈隆道, 蔡忠法. 基于传播算子的间谐波参数智能估计算法[J]. J4, 2011, 45(4): 759-764.