Please wait a minute...
J4  2010, Vol. 44 Issue (4): 639-644    DOI: 10.3785/j.issn.1008-973X.2010.04.003
电子、通信与自动控制技术     
无扫描激光三维成像系统的建模与仿真
潘华东, 谢斌, 刘济林
浙江大学 信息与通信工程研究所,浙江省综合信息网技术重点实验室,浙江 杭州 310027
Modeling and simulation for scannerless laser 3D imaging system
PAN Huadong, XIE Bin, LIU Jilin
Institute of Information and Communication Engineering, Zhejiang Provincial Key Laboratory of Information Network
Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

当前的像增强器耦合型CCD(ICCD)模型主要针对微光成像系统,无法直接用于三维成像系统.在三维成像系统中,像增强器不再工作于高增益状态,而且增益非线性对测量结果有很大影响.为此,改进ICCD模型中的噪声模型,采用非线性增益模型.针对光源强度和像增强器增益均随时间变化,对模型进行时间离散化处理.结合光照模型和物体三维数据进行系统仿真和定量分析.结果表明,增加CCD势阱容量、减小微通道板(MCP)增益、增大光源功率,可以提高信噪比,从而提高测量精度,同时需要提高快门速度、光源调制度,并抑制环境光影响.

Abstract:

Present intensified CCD (ICCD) model which mainly for lowlight imaging system is not suitable for the 3D imaging system. Image intensifiers operate with low gain, different from the lowlight imaging system, and the gain nonlinearity has a great effect on results. An improved ICCD noise model was proposed, and a nonlinear gain model was used. As the light is cosine modulated and the gain of the image intensifiers changes over time, the model is modified as timediscrete. The system was simulated and analyzed quantitatively together with the illumination model and the objects 3D data. The results show that increasing CCD well capacity, reducing microchannel plate(MCP) gain and increasing light power, lead to increased SNR (signaltonoise ratio) and improve the measurement accuracy. Additionally, very narrow shutter, high light modulation depth and high suppression of ambient light should be implemented.

出版日期: 2010-05-14
:  TN958.8  
基金资助:

 国家自然科学基金资助项目(60302013)

通讯作者: 刘济林,男,教授,博导.     E-mail: liujl@zju.edu.cn
作者简介: 潘华东(1980—),男,浙江金华人,博士生,从事三维成像、计算机视觉研究. Email: phd_zju@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

潘华东, 谢斌, 刘济林. 无扫描激光三维成像系统的建模与仿真[J]. J4, 2010, 44(4): 639-644.

BO Hua-Dong, XIE Bin, LIU Ji-Lin. Modeling and simulation for scannerless laser 3D imaging system. J4, 2010, 44(4): 639-644.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.04.003        http://www.zjujournals.com/eng/CN/Y2010/V44/I4/639

[1] SCOTT M W. Range imaging laser radar: US, 4,935,616 [P]. 19890814 [19900619].
[2] OGGIER T, LUSTENBERGER F, BLANC N. Miniature 3D TOF camera for realtime imaging [C]∥ Lecture Notes in Artificial Intelligence. Heidelberg: Springer, 2006, 4012: 212216.
[3] SCHROEDER W, FORGBER E, ESTABLE S. Scannerless laser range camera [J]. Sensor Review, 1999, 19(4): 285291.
[4] STOPPA D, GONZO L, SIMONI A. Scannerless 3D imaging sensors [C]∥ IEEE International Workshop on Imaging Systems and Techniques. [S.l.]: IEEE, 2005: 5861.
[5] GONZALEZBANOS H H, DAVIS J E. Systems and methods for determining depth using shuttered light pulses: US, 7,095,487 [P]. 20041012 [20060822].
[6] KAWAKITA M, IIZUKA K, NAKAMURA H, et al. Highdefinition realtime depthmapping TV camera:
HDTV axivision camera [J]. Optics Express, 2004, 12(22): 27812794.
[7] SMITHPETER C L, NELLUMS R O, LEBIEN S M, et al. A miniature, highresolution laser radar operating at video rates [C]∥ Proceedings of SPIE Conference 4035: Laser Radar Technology and Applications V. Orlando: SPIE, 2000: 279286.
[8] DORRONSORO C, OTADUY D, NAVARRO Y, et al. Simulated intensified images [C]∥ Proceedings of SPIE Conference 5987: ElectroOptical and Infrared Systems. Bruges: SPIE, 2005: 59870D.159870D.
[9] ZHU Y, CHEN Q. Scene simulation for LLL night vision system based on daytime image [C]∥ Proceedings of SPIE Conference 6031: Remote Sensing and Infrared Devices and Systems. Changchun: SPIE, 2006: 60310E.
[10] FRENKEL A, SARTOR M A, WLODAWSKI M S. Photonnoiselimited operation of intensified CCD cameras [J]. Applied Optics, 1997, 36(22): 52885297.
[11] LOU Ying, BAI Tingzhu. A study on solar blind UV ICCD detection performance [C]∥ Proceedings of SPIE Conference 6621: Photoelectronic Imaging and Detection. Beijing: SPIE, 2007: 66210P.
[12] EBERHARDT E H. Gain model for microchannel plates [J]. Applied Optics, 1979, 18(9):14181423.
[13] PRESCOTT J R. A statistical model for photomultiplier singleelectron statistics [J]. Nuclear Instruments and Methods, 1996, 39(1): 173179.
[14] SHIKHALIEV P M. Saturation model for secondary electron multiplier detectors [J]. Nuclear Instruments and Methods in Physics Research, 1999, A420(1/2): 202212.
[15] FRASER G W, PAIN M T, LEES J E, et al. The operation of microchannel plates at high count rates [J]. Nuclear Instruments and Methods in Physics Research, 1991, A306: 247260.
[16] GIUDICOTTI L, BASSAN M, PASQUALOTTO R, et al. Simple analytical model of gain saturation in microchannel plate devices [J]. Review of Scientific Instruments, 1994, 65(1): 247258.
[17] BARNYAKOV A Y, BARNYAKOV M Y, BOBROYNIKOV B S, et al. R&D of microchannel plate phototubes [J]. Nuclear Instruments and Methods in Physics Research, 2006, A567: 1720.

No related articles found!