Please wait a minute...
J4  2009, Vol. 43 Issue (7): 1327-1331    DOI: 10.3785/j.issn.1008-973X.2009.
材料与化学工程     
电催化剂及其对甲酸氧化的电催化性能
肖玉风,黄思玉, 陈卫祥
(浙江大学 化学系,浙江 杭州310027)
Microwave synthesis of Pd/C and Pd2Pt/C electrocatalysts for fomic acid electrooxidation
XIAO Yu-feng, HUANG Si-yu, CHEN Wei-xiang
(Department of Chemistry, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(937 KB)   HTML
摘要:

采用氨水调节的微波多元醇法合成了Pd/C和Pd2Pt/C催化剂,并使用透射电镜(TEM)和X-射线衍射(XRD)对催化剂的微观结构和形貌进行了表征.结果显示,在微波合成的电催化剂中Pd和Pd2Pt纳米粒子具有均匀的粒径,并高度分散在XC-72纳米碳载体上,Pd和Pd2Pt纳米粒子的平均粒径分别为54 和49 nm. 电化学测试结果显示,甲酸在Pd/C催化剂上氧化的起始电位和峰电位大大低于Pt/C催化剂,这是由于甲酸在Pd/C和Pt/C催化剂上不同的氧化途径引起的.结果还显示,甲酸在Pd2Pt/C催化剂和Pd/C催化剂上氧化的起始电位相同,而且在024和080 V有两个分别对应于甲酸在Pd和Pt催化剂的氧化, 说明微波合成的Pd/C和Pd2Pt/C催化剂对甲酸的氧化具有良好的电催化性能.

Abstract:

Pd/C and Pd2Pt/C electrocatalysts were synthesized by ammonia mediated microwave polyol process, and their microstructure and morphology were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found that the as-synthesized Pd and Pd2Pt nanoparticles were homogeneous in size and were highly dispersed on the surface of XC-72 carbon. The diameters of Pd and Pd2Pt were 54 and 51 nm, respectively. The electrochemical measurements showed that the onset potential and peak potential of fomic acid oxidation on Pd/C catalyst were much lower than those on Pt/C catalyst due to the reason that reaction pathways of fomic acid oxidation on Pd/C was different from that on Pt/C catalysts. The Pd2Pt/C catalyst displayed a low onset potential for the fomic oxidation, which was equal to that on Pd/C, and two current peaks of fomic oxidation at 022 and 089 V were attributed to the fomic acid oxidation on Pd and Pt catalysts. The facts indicated that the microwave synthesized Pd/C and Pd2Pt/C electrocatalysts exhibited better electrocatalystic performances than Pt/C.

出版日期: 2009-07-01
:  TM911.4  
基金资助:

国家自然科学基金资助项目(50171063);浙江省自然科学基金资助项目(Y407030).

通讯作者: 陈卫祥, 男, 教授.     E-mail: weixiangchen@zju.edu.cn
作者简介: 肖玉风(1985-), 女, 河南郑州人,硕士生, 从事高性能燃料电池催化剂合成和应用的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

肖玉风, 黄思玉, 陈卫祥. 电催化剂及其对甲酸氧化的电催化性能[J]. J4, 2009, 43(7): 1327-1331.

XIAO Yu-Feng, HUANG Sai-Yu, CHEN Wei-Xiang. Microwave synthesis of Pd/C and Pd2Pt/C electrocatalysts for fomic acid electrooxidation. J4, 2009, 43(7): 1327-1331.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.        http://www.zjujournals.com/eng/CN/Y2009/V43/I7/1327

[1] ARIC A S, SRINIVASAN S, ANTONUCCI V. DMFCs: from fundamental aspects to technology development [J]. Fuel Cells, 2001, 1(2): 133161.
[2] RICE C A, HA S, MASEL R I, et al. Direct formic acid fuel cells [J].Journal of Power Sources, 2002, 111(1): 8389.
[3] ZHOU W J, ZHOU Z H, SONG S Q, et al. Pt based anode catalysts for direct ethanol fuel cells [J]. Applied Catalysis B, 2003, 46(2): 273285.
[4] HA S, LARSEN Y, ZHU Y, et al. Direct formic acid fuel cells with 600 mA cm-2 at 04 V and 22 °C [J]. Fuel Cells, 2004, 4(4): 337343.
[5] WANG X, HU J M, HSING I M. Electrochemical investigation of formic acid electro-oxidation and its crossover through a nafion membrane [J].Journal of Electroanalysis Chemistry, 2004,562(1): 7380.
[6] JIANG J, KUCERNAK A. Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid [J]. Journal of Electroanalysis Chemistry,2002, 520(1-2): 6470.
[7] PARK S, XIE Y, WEAVER M J. Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation [J]. Langmuir, 2002, 18(15): 57925798.
[8] LOVIC J D, TRIPKOVIC A V, GOJKOVIC S, et al. Kinetic study of formic acid oxidation on carbon-supported Platinum electrocatalyst [J]. Journal of Electroanalysis Chemistry,2005, 581(2): 294302.
[9] CAPON D, PARSONS R. The oxidation of formic acid at noble metal electrodes, part 4. platinum + palladium alloys [J]. Journal of Electroanalysis Chemistry,1975, 65(1): 285305.
[10] HA S, LARSEN R, MASEL R I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells [J]. Journal of Power Sources,2005, 144(1): 2834.
[11] HOSHI N, KIDA K, NAKAMURA M, et al. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium [J]. Journal of Physical Chemistry B, 2006, 110(25): 1248012484.
[12] WANG Y, REN J W, DENG K, et al. preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media [J]. Chemistry Materials, 2000, 12(6): 16221627.
[13] BOCK C, PAQUET C, COUILLARD M, et al. Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism [J]. Journal of American Chemistry Socity, 2004, 126(25): 80288037.
[14] CHO Y H, CHOI B, CHO Y H, et al., Pd-based PdPt(19∶1)/C electrocatalyst as an electrode in PEM fuel cell [J]. Electrochemistry Communications, 2007, 9(3): 378381.
[15] MROZEK M F, LUO H, WEAVER M J. Formic acid electrooxidation on platinum-group metals: is adsorbed carbon monoxide solely a catalytic poison [J]. Langmuir, 2000, 16(23): 84638469.
[16] RICE C, HA S, MASEL R I, WASZCZUK P, et al. Direct formic acid fuel cells [J]. Journal of Power Sources, 2002, 111(1): 8389.
[17] CHOI J H, JEONG K J, DONG Y J, et al. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells [J]. Journl of Power Sources,2006, 163(1):7175.

[1] 赵杰, 黄思玉, 陈卫祥. PtRu/C和PtNi/C催化剂合成及其对甲醇氧化的电催化性能[J]. J4, 2009, 43(5): 962-967.