Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 996-1001    DOI: 10.3785/j.issn.1008-973X.2018.05.021
海洋工程     
分层环境中异重流运动问题的直接数值模拟
梁小龙, 乔文丽, 赵西增
浙江大学 海洋学院、浙江 舟山 316021
Direct numerical simulation of gravity current with stratified water environment
LIANG Xiao-long, QIAO Wen-li, ZHAO Xi-zeng
Ocean College, Zhejiang University, Zhoushan 316021, China
 全文: PDF(2704 KB)   HTML
摘要:

为了研究线性分层环境下的开闸式异重流运动过程的问题,采用改进的高精度直接数值模拟(DNS)模型,在正交坐标系下,以DNS为基本求解器,实现物质运输方程和Navier-Stokes方程同步求解.采用距离函数平滑初始状态的不连续运输方程,利用具有六阶精度的迎风紧致差分格式(UCCD)改进原模型,更准确地求解物质输运方程.通过求解一维对流方程和入侵重力流的模拟结果验证了模型的可靠性.开展泥沙异重流与线性分层环境掺混过程的研究,并获得了高精度数值结果,可以更好地捕捉中间入侵的异重流产生的内波效果.结果表明:该模型不仅可以准确模拟入侵异重流卷吸分层环境水体的过程,还可以准确模拟头部运动位置、异重流卷吸沉降以及能量转换等问题.

Abstract:

The improved direct numerical simulations (DNS) with high-resolution numerical model was employed to simulate lock-exchange gravity current in a linearly stratified ambient fluid. The model was established in the Cartesian coordinate system, using DNS as the base solver to make material transport equation and the Navier-Stokes equation solved simultaneously. The distance function was used to smooth the initial discontinuous transport equation. The upwind compact difference scheme (UCCD) with the sixth-order accuracy was used to improve the original model and solve material transport equation more accurately. The reliability of the model was verified by solving the simulation results of the one-dimensional convection equation and the invasion gravity current. The process of mixing the sediment gravity current and linear stratification ambient fluid was studied. High-precision numerical results are obtained and internal wave generated by intrusion of gravity current is better captured.Results show that the model can accurately simulate stratification ambient fluid entrained by invasion gravity current and thefront movementlocation of turbidity currents. Sedimentation rates and energy conversion are embodied excellently.

收稿日期: 2017-05-10 出版日期: 2018-11-07
CLC:  TV142  
基金资助:

国家自然科学基金资助项目(51479175,51679212);浙江省杰出青年基金资助项目(LR16E090002)和中央高校基本科研业务费专项资金资助项目(2018QNA4041).

通讯作者: 赵西增,男,教授.orcid.org/0000-0002-1392-139X.     E-mail: xizengzhao@zju.edu.cn
作者简介: 梁小龙(1990-),男,硕士生,从事计算流体力学等研究.orcid.org/0000-0001-6873-1043.E-mail:21534099@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

梁小龙, 乔文丽, 赵西增. 分层环境中异重流运动问题的直接数值模拟[J]. 浙江大学学报(工学版), 2018, 52(5): 996-1001.

LIANG Xiao-long, QIAO Wen-li, ZHAO Xi-zeng. Direct numerical simulation of gravity current with stratified water environment. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 996-1001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.021        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/996

[1] KUBO Y. Experimental and numerical study of topo-graphic effects on deposition from two-dimensional, particle-driven density currents[J]. Sedimentary Geology, 2004, 164(3/4):311-326.
[2] VASSILIOS A. Tsihrintzis, Vahid Alavian. Spreading of three-dimensional inclined gravity plumes[J]. Journal of Hydraulic Research, 1996, 34(5):695-711.
[3] LONGO S, UNGARISH M, FEDERICO V D, et al. Gravity currents in a linearly stratified ambient fluid created by lock release and influx in semi-circular and rectangular channels[J]. Physics of Fluids, 2016, (89):96-115.
[4] CENEDESE C, ADDUCE C. Mixing in a density-driven current flowing down a slope in a rotating fluid[J]. Journal of Fluid Mechanics, 2008, 604:369-388.
[5] CENEDESE C, ADDUCE C. A New Parameterization for Entrainment in Overflows[J]. Journal of Physical Oceanography, 2010, 40(8):313-322.
[6] HALLWORTH M A, HUPPERT H E, Phillips J C, et al. Entrainment into two-dimensional and axisymmetric turbulent gravity currents[J]. Journal of Fluid Mechanics, 1996, 308:289-311.
[7] OTTOLENGHI L, ADDUCE C, INGHILESI R, et al. Entrainment and mixing in unsteady gravity currents[J]. Journal of Hydraulic Research, 2016, 54(5):1-17.
[8] 张巍,赵亮,贺治国,等.线性层结盐水中的羽流运动特性[J].水科学进展,2016,27(4):602-608. ZHANG Wei, ZHAO Liang, HE Zhi-guo, et al. Characteristics of plumes in linearly stratified salt-water[J]. Advances in Water Science, 2016, 27(4):602-608.
[9] GUO Y, ZHANG Z, SHI B. Numerical simulation of gravity current descending a slope into a linearly stratified environment[J]. Journal of Hydraulic Engineering, 2014, 140(12):1-10.
[10] PETERSON T E. Eliminating gibb's Effect from separation of variables solutions[J]. Siam Review, 1998, 40(2):324-326.
[11] NASR-AZADANI M M, MEIBURG E. Turbidity currents interacting with three-dimensional seafloor topo-graphy[J]. Journal of Fluid Mechanics, 2014, 74(52):409-443.
[12] BOLSTER D, HANG A, LINDEN P F. The front speed of intrusions into a continuously stratified medium[J]. Journal of Fluid Mechanics, 2008, 594:369-377.
[13] OSHER S, SETHIAN J A. Fronts propagating with curvature dependent speed:algorithms based on the Hamilton-Jacobi formulation[J]. Journal of Computational Physics, 1988, 79(1):12-49.
[14] JIANG G S, PENG D. Weighted ENO schemes for Hamilton-Jacobi equations[J]. Siam Journal on Scientific Computing, 2000, 21(6):2126-2143.
[15] CHU P C, FAN C. A Three-Point Combined Compact Difference Scheme[J]. Journal of Computational Physics, 1998, 140(2):370-399.
[16] CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Mathematics of Computational, 1968, 22(104):745-762.
[17] JIANG G S, SHU C W. Efficient Implementation of Weighted ENO Schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[18] SNOW K, SUTHERLAND B R. Particle-laden flow down a slope in uniform stratification[J]. Journal of Fluid Mechanics, 2014, 755:251-273.
[19] NASR-AZADANI M M, MEIBURG E, KNELLER B. Mixing dynamics of turbidity currents interacting with complex seafloor topography[J]. Environmental Fluid Mechanics, 2016:1-23.

No related articles found!