Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (12): 2436-2443    DOI: 10.3785/j.issn.1008-973X.2017.12.017
航空航天技术     
微型反作用飞轮速度估计与控制策略研究
刘光辉1, 周军1, GUO Jian2, 马学龙1, 王成飞1
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. Faculty of Aerospace Engineering, Delft University of Technology, Delft, 2629 HS The Netherlands
Speed estimation and control strategy for micro-reaction wheel
LIU Guang-hui1, ZHOU Jun1, GUO Jian2, MA Xue-long1, WANG Cheng-fei1
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Faculty of Aerospace Engineering, Delft University of Technology, Delft, 2629 HS The Netherlands
 全文: PDF(2054 KB)   HTML
摘要:

为了满足皮纳卫星、立方星的姿态控制精度要求,提高微型反作用飞轮控制精度,基于开关式霍尔元件,设计测速与控制总体方案,提出一种将变分频T法与带速度切换迟滞环的滑动均值滤波相结合的速度估计方法,提高测速精度,并采用积分分离的离散PID算法防止控制饱和.结果表明:速度控制的最大误差≤ 1.5%,平均误差≤ 0.4‰,误差方差≈0.25.2016年6月25日,该飞轮随世界首颗12U立方星"翱翔之星"搭载"长征7号"发射入轨,实现卫星三轴稳定,在轨服役99 d直到卫星坠入大气层,圆满完成任务.地面测试与在轨运行结果表明,所采用的方案有效可行,速度估计与控制算法能够满足卫星姿态控制系统的任务需求.

Abstract:

The speed control accuracy of micro-reaction wheel was improved in order to meet the accuracy requirements for the attitude control of pico-nano satellites and CubeSat. The speed measuring and control system was designed with the switch-type Hall sensor,a speed estimation method was proposed to ameliorate the measurement accuracy,which was combined of time measuring by variable prescalerT-method and average sliding filter with speed switching hysteresis loop. The discrete PID algorithm of integral separation was utilized to prevent the control saturation. Results show that the maximum error of speed control is less than 1.5%, the average error of speed control is less than 0.4‰ and the error variance of speed controlis about 0.25. The reaction wheel provided three-axis stability for the satellite, as an important part of the world's first 12U CubeSat "Star of AoXiang", which was launched by "CZ-7" on June 25, 2016. The satellite had successfully worked until atmospheric re-entry after 99 days. The ground test and in-orbit service of the satellite show that the proposed method is feasible and effective,both the speed estimation method and the control algorithm can satisfy the mission requirement of satellite attitude control system.

收稿日期: 2017-04-20 出版日期: 2017-11-22
CLC:  V448.22  
基金资助:

航天支撑技术基金资助项目(2015KC020117);2011年欧盟第七框架协议支持项目(284427).

作者简介: 刘光辉(1983-),男,助理研究员,博士,从事星载/弹载电气系统、执行机构研究.orcid.org/0000-0001-8993-3568.E-mail:liuguanghui@nwpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘光辉, 周军, GUO Jian, 马学龙, 王成飞. 微型反作用飞轮速度估计与控制策略研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2436-2443.

LIU Guang-hui, ZHOU Jun, GUO Jian, MA Xue-long, WANG Cheng-fei. Speed estimation and control strategy for micro-reaction wheel. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2436-2443.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.12.017        http://www.zjujournals.com/eng/CN/Y2017/V51/I12/2436

[1] 韩柯,王昊,朱小丰,向甜,等.皮卫星偏置动量轮在轨备份切换策略[J].浙江大学学报:工学版,2011,45(10):1771-1776. HAN Ke, WANG Hao, ZHU Xiao-feng, et al.In-orbit backup and switch methed for pico-satellite's bias momentum wheel[J]. Journal of Zhejiang University:Engineering Science, 2011, 45(10):1771-1776.
[2] 赵炜渝,白保存,金仲和.皮纳卫星应用与特点分析[J].国际太空,2013,8(2):36-40. ZHAO Wei-yu, BAI Bao-cun, JIN Zhong-he. Application and characteristic analysis of pico-nano satellite[J].Space International, 2013,8(2):36-40.
[3] www.sciencemag.org. Breakthrough of the year 2014[J].Science, 2014,346(12):1444-1449.
[4] 廖文和.立方体卫星技术发展及其应用[J].南京航空航天大学学报,2015,47(6):792-797. LIAO Wen-he. A survey of Cubesat technology development and applications[J].Journal of Nanjing University of Aeronautics & Astronautic, 2015,47(6):792-797.
[5] HOEVENAARS T, ENGELENY S, BOUWMEESTER J. Model-based discrete PID controller for cubesat reaction wheels using COTS bushless DC motors[C]//Proceedings of the 1st IAA Conference on Dynamics and Control of Space Systems. Porto:[s. n.], 2012:379-394.
[6] SINCLAIR D, GRANT C C, ZEE R E. Enabling reaction wheel tecnology for high performance nanosatellite attitude control[C]//Proceedings of the 21st AIAA/USU Conference on Small Satellites.Solna:[s. n],2007.
[7] SANJAY J. Design and analysis of nano momentum wheel for picosatellite attitude control system[J]. Aircraft Engineering and Aerospace Technology, 2009,81(5):424-431.
[8] 王辉.小卫星用姿态控制飞轮系统关键技术研究[D].长春:中国科学院长春光学精密机械与物理究所,2015. WANG Hui. Research on key technology of attitude control flywheel system for small satellites application[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, 2015.
[9] 朱娜,刘刚,王志强.一种基于多霍尔的磁悬浮反作用飞轮速率模式控制方法[J].航天控制,2010,28(4):54-58. ZHU Na, LIU Gang, WANG Zhi-qiang. A speed mode control system of brushless DC motor for magnetically suspended reaction flywheel based on multi-Hall[J]. Aerospace Control, 2010, 28(4):54-58.
[10] 陈冬,房建成.高精度磁悬浮CMG框架测角的快速最优估计算法[J].宇航学报,2008,29(3):943-946. CHEN Dong, FANG Jian-cheng. Fast optimization estimation algorithm of high precision MSCMG angular measurement[J]. Journal of Astronautics, 2008,29(3):943-946.
[11] CHEON D I, KIM J, CHOI I, et al. An averaging algorithm for speed measurement of SCL/KAU reaction wheel[C]//IEEE/SICE International Symposium on System Integration. Kyoto:IEEE, 2011:880-883.
[12] BOUWMEESTER J, REIJNEVELD J, HOEVENAARS T, et al. Design and verification of a very compact and versatile attitude determination and control system for the Delfi-n3Xt nanosatellite[C]//Proceedings of the 4S (Small Satellites Systems and Services) Symposium. Slovenia:CNES/ESA, 2014:1-15.
[13] ZHENG L G, YOU Z, ZHANG G F, et al. Design of micro momentum wheel controller for micro-nano satellite[C]//International Conference on Artificial Intelligence. Dengleng:IEEE 2011:2034-2038.
[14] LIU Y, ZHAO J, XIA M Z, et al. Model referenceadaptive control-based speed control of brushless DC motors with low-resolution hall-effect sensors[J]. IEEE Transactions on Power Electronics, 2014,29(3):1514-1522.
[15] 文晓燕,郑琼林,韦克康,等.增量式编码器测速的典型问题分析及应对策略[J].电工技术学报,2012,27(2):185-190. WEN Xiao-yan, ZHENG Qiong-lin, WEI Ke-kang, et al. Typical issues analysis and corresponding strategy for incremental encoder speed measurement[J]. Transactions Of China Electrotechnical Society, 2012, 27(2):185-190.
[16] 郝敬然,王舒雁.基于开关式Hall传感器的飞轮低速控制[J].航天控制,2006,24(1):29-32. HAO Jing-ran, WANG Shu-yan. Low speed control for flywheel based on switch-mode Hall[J]. Aerospace Control, 2006, 24(1):29-32.
[17] Sinclair Interplanetary. Picosatellite Reaction Wheels(RW-0.007-4) DataSheet[EB/OL].[S.l.]:Sinclair Interplanetary. (2013-01-01)[2017-06-01]. http://www.sinclairinterplanetary.com/reactionwheels/7%20mNm-sec%20wheel%202013a.pdf?attredirects=0.
[18] Blue Canyon Technologies. Reaction Wheels DataSheet[EB/OL]. Colorado:Blue Canyon Technologies. (2017-03-01)[2017-06-01]. http://bluecanyontech.com/wp-content/uploads/2017/03/DataSheet_RW_06.pdf.
[19] Astro-und Feinwerktechnik Adlershof GmbH. RW1 DataSheet[EB/OL]. Berlin:Astro-und Feinwerktechnik Adlershof GmbH. (2010-04-04)[2017-06-01].http://www.astrofein.com/2728/dwnld/admin/Datenblatt_RW1.pdf.

[1] 崔仁洁, 蒙涛, 霍俊海, 金仲和. 微纳卫星动态剩磁在轨标定技术[J]. 浙江大学学报(工学版), 2017, 51(12): 2444-2450.