Please wait a minute...
浙江大学学报(工学版)
化学工程、环境工程     
壁流蜂窝式微填充床制备及变压吸附中的应用
曹伟波, 王丽军, 李希
浙江大学 化学工程与生物工程学院,浙江 杭州 310027
Fabrication of wall-flow honeycomb micro packed bed and application in pressure swing adsorption process
CAO Wei-bo, WANG Li-jun, LI Xi
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2747 KB)   HTML
摘要:

针对普通固定吸附床压降较大,吸附剂利用效率较低的问题,以壁流式蜂窝陶瓷为基础,制备新型的微填充吸附床.研究该装置的压降、流体分布等流动特性,将壁流式蜂窝陶瓷微填充吸附床应用于变压吸附脱碳过程.实验表明,壁流蜂窝式微填充床的压降极低,流体分配平均,填充层内各处的吸附负荷均匀.通过变压吸附实验研究混合气体CO2-N2体系下吸附床的动态吸附性能,考察压力、浓度和流量对穿透曲线的影响,研究吸附剂再生以及连续变压吸附操作对床层吸附容量的影响规律,实验数据与所建立的微填充床数学模型符合良好.实验和模拟结果表明,该壁流蜂窝式微填充床是一个较理想的吸附床几何构型.

Abstract:

A novel honeycomb micro packed bed (HMPB) was fabricated by wall-flow honeycomb ceramics in order to resolve the issues of high pressure drop and low catalysts utilization efficiency in common packed adsorption bed. The flow condition and pressure drop of HMPB were investigated and the application in pressure swing adsorption (PSA) process of carbon dioxide capture were considered based on both experiments and mathematical simulation. Results showed that the pressure drop of HMPB was so low, uniform distribution of flow was realized and absorption duty was averaged. Experiments on CO2N2 adsorption and dynamic adsoption capacity of activated carbon were conducted by usage of HMPB. Then influence of pressure, concentration and flowrate on breakthrough curves were considered to reveal the rules of adsorbent recovery and the effects of continuous absorption process on bed pressure. The experimental data agreed well with the model of micro packed bed. HMPB is an appropriate structure of packed adsorption bed and of great potential in industrial application.

出版日期: 2017-04-25
CLC:  TQ 028  
通讯作者: 王丽军, 男, 副研究员. ORCID: 0000-0002-4977-9428.     E-mail: wang_lijun@zju.edu.cn
作者简介: 曹伟波(1991—),男,硕士生,从事仿生反应器设计的研究. ORCID: 0000-0002-9534-584X. E-mail: 15700078842@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

曹伟波, 王丽军, 李希. 壁流蜂窝式微填充床制备及变压吸附中的应用[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.019.

CAO Wei-bo, WANG Li-jun, LI Xi. Fabrication of wall-flow honeycomb micro packed bed and application in pressure swing adsorption process. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.019.

[1] REZAEI F, WEBLEY P. Structured adsorbents in gas separation processes [J]. Separation and Purification Technology, 2010, 70(3): 243-256.
[2] LI Y Y, PERERA S P, CRITTENDEN B D. zeolite monoliths for air separation: Part 2: oxygen enrichment, pressure drop and pressurization [J]. Chemical Engineering Research and Design, 1998, 76(8):931-941.
[3] WILLIAMS J L. Monolith structures, materials, properties and uses [J]. Catalysis Today, 2001, 69(1): 3-9.
[4] RIBEIRO R P, SAUER T P, LOPES F V, et al. Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith [J]. Journal of Chemical and Engineering Data, 2008, 53(10): 2311-2317.
[5] GRANDE C A, CAVENATI S, BARCIA P, et al. Adsorption of propane and propylene in zeolite 4A honeycomb monolith [J]. Chemical Engineering Science, 2006, 61(10): 3053-3067.
[6] GADKAREE K P. Carbon honeycomb structures for adsorption applications [J]. Carbon, 1998, 36(7):981-989.
[7] PATCAS F C, GARRIDO G I, KRAUSHAAR-CZARNETZKI B. CO oxidation over structured carriers: a comparison of ceramic foams, honeycombs and beads [J]. Chemical Engineering Science, 2007, 62(15): 3984-3990.
[8] SULLIVAN P, ROOD M, HAY K, et al. Adsorption and electrothermal desorption of hazardous organic vapors [J]. Journal of Environmental Engineering, 2001, 127(3): 217-223.
[9] GLUECKAUF E. Theory of chromatography. Part 10. formulæ for diffusion into spheres and their application to chromatography [J]. Transactions of the Faraday Society, 1955, 51(1): 1540-1551.
[10] EDWARDS M, RICHARDSON J. Gas dispersion in packed beds [J]. Chemical Engineering Science, 1968, 23(2): 109-123.
[11] CACCIN M, GIORGI M, GIACOBBO F, et al. Removal of lead (II) from aqueous solutions by adsorption onto activated carbons prepared from coconut shell [J]. Desalination and Water Treatment, 2015, 57(10): 4557-4575.
[12] 陈勇,由宏新.颗粒直径对吸附分离影响的数值模拟[J].化工进展,2013,32(3): 521-526.
CHEN Yong, YOU Hong-xin. Numerical simulation of the particle diameter on adsorption and separation [J]. Chemical Industry and Engineering Progree, 2013, 32(3): 521-526.

[1] 刘军,李全功,廖义涵,王为术. 垃圾焚烧电厂焚烧炉-余热锅炉性能及NOx排放[J]. 浙江大学学报(工学版), 2020, 54(5): 1014-1021.
[2] 魏颖颖,姜东岳,付清腾,郭飞. 悬浮油滴在改性PAN纤维膜上的行为研究[J]. 浙江大学学报(工学版), 2020, 54(1): 196-201.
[3] 李海凤,王成习. DMAC水溶液乙酸吸附分离过程[J]. 浙江大学学报(工学版), 2016, 50(9): 1725-1729.
[4] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.
[5] 许丽芳, 王成习, 李海凤. 复合溶剂萃取N,N 二甲基乙酰胺[J]. 浙江大学学报(工学版), 2016, 50(2): 347-352.
[6] 方梦祥, 江文敏, 王涛, 项群扬, 卢佳汇, 周旭萍. 基于实验的直接蒸气再生CO2系统模拟及优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1565-1571.
[7] 包士然, 张金辉, 张小斌, 唐媛, 张瑞平, 邱利民. 磁致空气分离技术的研究进展[J]. 浙江大学学报(工学版), 2015, 49(4): 605-615.
[8] 张富翁, 王立, 刘传平. 双组分颗粒振动体系中的能量传递与耗散[J]. 浙江大学学报(工学版), 2015, 49(3): 571-577.
[9] 汪明喜, 方梦祥, 汪桢, 潘一力, 骆仲泱. 相变吸收剂对CO2吸收与再生特性[J]. J4, 2013, 47(4): 662-668.
[10] 沈崴,孙荣泽,汤珂,金滔. 基于LNG卫星站冷能利用的小型空分流程[J]. J4, 2013, 47(3): 549-553.
[11] 邹昀, 童张法, 刘琨, 冯献社. 纯溶剂在线性低密度聚乙烯膜中扩散的计算[J]. J4, 2012, 46(4): 744-748.
[12] 王琪, 蔡美强, 关怡新, 姚善泾, 朱自强. 强化两相混合的超临界技术制备聚乳酸微粒[J]. J4, 2010, 44(12): 2383-2390.
[13] 王志远, 林东强, 姚善泾. 直接溶解法制备纤维素/碳化钨复合扩张床基质[J]. J4, 2010, 44(5): 998-1002.