Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
燃煤电厂选择性催化还原脱硝系统运行成本
杨航, 郑成航, 金侃, 张军, 张涌新, 翁卫国,吴学成, 高翔
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Analysis on operation cost of SCR system in coal-fired power plant
YANG Hang, ZHENG Cheng hang, JIN Kan, ZHANG Jun, ZHANG Yong xin, WENG Wei guo, WU Xue cheng, GAO Xiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1466 KB)   HTML
摘要:

针对燃煤电厂选择性催化还原(SCR)脱硝系统,提出基于费用效益分析方法的脱硝运行成本评估体系和计算模型,研究典型机组的SCR脱硝系统运行成本.结果表明,在机组年运行小时数为5 000 h,入口NOx质量浓度为400 mg/m3时(基准含氧量6%),容量分别为300、600和1 000 MW机组的SCR脱硝系统运行成本分别为7.6~8.6、5.75~6.55和4.8~5.4元/(MW·h);入口质量浓度从200 mg/m3分别增加至400和600 mg/m3时,总成本中还原剂成本增幅最大,分别为195.9%和391%;当达到超低排放标准限值时,300、600和1 000 MW机组的SCR脱硝系统运行成本相比达到新标准排放限值时分别增加约9.64%、9.68%和9.8%;机组年运行小时数从4 000 h增加至6 000 h时,300、600和1 000 MW机组的SCR脱硝系统运行成本分别降低约28%、26%和26.2%.

Abstract:
An operation cost assessment system and calculation model of selective catalytic reduction (SCR) system in coal-fired power plant was established based on cost-benefit analysis. The operation cost of SCR system in typical unit was investigated. Results show that the operation cost of SCR system in large capacity unit is lower than that in small capacity unit. When the annual operation hours are 5 000 h and NOx inlet concentration is 400 mg/m3 (the oxygen content of base condition is 6%),the operation cost of SCR system in typical 300, 600 and 1 000 MW power unit are among 7.60~8.60, 5.75~6.55 and 4.80~5.40 yuan/MW·h, respectively. When the NOx inlet concentration increases from 200 mg/m3 to 400 mg/m3 and to 600 mg/m3, the reductant cost in the total operation cost has the largest increase, by 195.90% and 391.00%, respectively. When the emission is up to ultra-low emission standard, compared to the GB13223-2011 standard, the operation cost of 300, 600 and 1 000 MW increases by 9.64%, 9.68% and9.80%. When the annual service hours increase from 4 000 h to 6 000 h, the operation cost of 300, 600 and 1 000 MW decreases by 28.00%, 26.00% and 26.20%.
出版日期: 2017-03-06
:  X324  
基金资助:

国家杰出青年科学基金资助项目(51125025) |浙江省重大科技专项计划资助项目(2014C03018)|中央高校基本科研资助项目(2014QNA4010)

通讯作者: 高翔,男,教授,博导. ORCID: 0000-0002-1732-2132     E-mail: xgao1@zju.edu.cn
作者简介: 杨航(1990—),男,博士生,从事燃煤电厂污染物控制系统运行方面等研究. ORCID: 0000-0002-0515-7010. E-mail: yanghang901004@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨航, 郑成航, 金侃, 张军, 张涌新, 翁卫国,吴学成, 高翔. 燃煤电厂选择性催化还原脱硝系统运行成本[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.02.019.

YANG Hang, ZHENG Cheng hang, JIN Kan, ZHANG Jun, ZHANG Yong xin, WENG Wei guo, WU Xue cheng, GAO Xiang. Analysis on operation cost of SCR system in coal-fired power plant. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.02.019.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.02.019        http://www.zjujournals.com/eng/CN/Y2017/V51/I2/363

[1] 国家统计局能源统计司.中国能源统计年鉴[M].北京:中国统计出版社,2013.
[2] 刘振亚. 中国电力行业年度发展报告\[R\].北京:中国电力企业联合会,2013.
LIU Zheng ya. China power industry annual development report \[R\]. Beijing: China Electricity Council,2013.
[3] 中华人民共和国国家发展和改革委员会. 煤电节能减排升级与改造行动计划(2014-2020年)\[EB/OL\]. (2014-09-12). http://bgt.ndrc.gov.cn/zcfb/201409/t20140919_626242.html.
National Development and Reform Commission. Action plan for the transformation and upgrading of coal power energy conservation and emission reduction (2014-2020) \[EB/OL\]. (2014-09-12).http://bgt.ndrc.gov.cn/zcfb/201409/t20140919_626242.html.
[4]中华人民共和国环境保护部. 关于公布全国燃煤机组脱硫脱硝设施等重点大气污染减排工程名单的公告\[EB/OL\].( 2014-07-08). http://www.zhb.gov.cn/gkml/hbb/bgg/201407/t20140711_278584.htm Ministry of Environmental Protection of the People’s Republic of China. Announcement of the list of the desulfurization and denitrification facilities in the coal-fired power sector \[EB/OL\]. (20140708) .http://www.zhb.gov.cn/gkml/hbb/bgg/201407/t20140711_278584.htm
[5] DANIEL C M, RAVI S, PAULA M H, et al. EPA Air pollution control cost manual [R]. North Carolina: United States, 2002.
[6] STREETS D G, YU C, BERGIN M H, et al. Modeling study of air pollution due to the manufacture of export goods in China’s Pearl River Delta [J]. Enviromental Science & Technology, 2006, 40(7): 2099-2107.
[7] BING Z, WILSON E, JUN B. Controlling air pollution from coal power plants in China: incremental change or a great leap forward [J]. Enviromental Science & Technology, 2011, 45(24): 10294-10295.
[8] VIJAY S, DECAROLIS J F, SRIVASTAVA R K. A bottom-up method to develop pollution abatement cost curves for coalfired utility boilers [J]. Energy Policy, 2010, 38(5): 2255-2261.
[9] KANEKO S, FUJII H, SAWAZU N, et al. Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China [J]. Energy Policy, 2010, 38(5): 2131-2141.
[10] GENG Y, SARKIS J. Achieving national emission reduction target China’s New challenge and opportunity [J]. Enviromental Science & Technology, 2011, 46(1): 107-108.
[11] FU J S, BRILL Jr D E, RANJITHAN R S. Conjunctive use of models to design costeffective ozone control strategies [J]. Journal of the Air & Waste Management Association, 2006, 56(6): 800-809.
[12] MAHLIA T M I, SAID M F M, MASJUKI H H, et al. Cost-benefit analysis and emission reduction of lighting retrofits in residential sector [J]. Energy and Buildings, 2005, 37(6):
573-578.
[13] KANADA M, DONG L, FUJITA T, et al. Regional disparity and cost-effective SO2 pollution control in China: a case study in 5 mega-cities [J]. Energy Policy, 2013, 61: 1322-1331.
[14] COFALA J, AMANN M, GYARFAS F, et al. Cost-effective control of SO2 emissions in Asia [J]. Journal of Enviromental Management, 2004, 72(3): 149-161.
[15] HALKOS G E. Evaluation of the direct cost of sulfur abatement under the main desulfurization technologies [J]. Energy Sources, 1995, 17(4): 391-412.
[16] DONG L, DONG H, FUJITA T, et al. Cost-effectiveness analysis of China’s Sulfur dioxide control strategy at the regional level: regional disparity, inequity and future challenges [J]. Journal of Cleaner Production, 2015, 90: 345-359.
[17] WANG Y S, XIE B C, SHANG L F, et al. Measures to improve the performance of China’s thermal power industry in view of cost efficiency [J]. Applied Energy, 2013, 112: 1078-1086.
[18] SUN J, SCHREIFELS J, WANG J, et al. Cost estimate of multi-pollutant abatement from the power sector in the Yangtze River Delta region of China [J]. Energy Policy, 2014, 69: 478-488.
[19] 电力规划设计总院.火电工程限额设计参考造价指标(2013年水平)[M].北京: 中国电力出版社, 2014.
[20] 黄东.火电行业氮氧化物控制技术经济分析[D].南京:南京信息工程大学, 2013.
HUANG Dong. Technical economy analysis of Nitrogen oxide control technologies for the Thermal power industry [D]. Nanjing: Nanjing University of information engineering, 2013.
[21] 刘通浩.中国电力行业NOx排放控制成本效益分析[D];北京: 清华大学, 2012.
LIU Tonghao. Costbenefit analysis of the nox emission control of power industry in China [D]. Beijing: Tsinghua University, 2012.
No related articles found!