Please wait a minute...
浙江大学学报(工学版)
机械与电气工程     
矩形横截面导体内衰减振荡电流脉冲的趋肤效应
潘龙1,2, 陶定峰3, 何闻1,2, 顾邦平1,2
1. 浙江大学 浙江省先进制造技术重点实验室,浙江 杭州 310027;2. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027; 3. 国网浙江省电力公司电力科学研究院,浙江 杭州310014
Skin effect of decay oscillating current pulse in rectangular cross section conductor
PAN Long1,2, TAO Ding feng3, HE Wen1,2, GU Bang ping1,2
1. Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Zhejiang University, Hangzhou 310027, China;2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China;3. State Grid Zhejiang Electric Power Company Power Research Institute, Hangzhou 310014, China
 全文: PDF(1309 KB)   HTML
摘要:

为了优化设计导通电流脉冲的工件以及制定电流脉冲处理材料的工艺方案,研究电流脉冲通过时电流密度、电磁场等物理量在导体内部的分布情况.根据Maxwell方程组,推导出振荡衰减电流脉冲通过矩形截面金属导体时,电场强度、电流密度、磁感应强度、电磁能密度和Maxwell应力张量在横截面分布的解析解.以电容放电通过碳钢板状试样为例,计算相关物理量的分布情况.结果表明,电流、电磁场的分布存在明显的趋肤效应,表面处的数值远远大于心部,主要分布在距离表面深度不大于趋肤深度的表层区域.电场强度、电流密度、磁感应强度、电磁能密度和Maxwell应力张量都呈现出振荡衰减的变化趋势.通过电流脉冲对45碳钢横截面碳原子作用的不均匀现象验证了趋肤效应的存在.

Abstract:
The distributions of current density, electromagnetic field and other physical parameters in the cross section when the pulse pass through the conductor were analyzed for the design of workpiece conducting current pulse and the process plan of treating materials by electric current pulse (ECP). The solutions for distributions of electric field intensity, current density, magnetic flux density, electromagnetic energy density and Maxwell stress tensor were deduced based on the Maxwell equations for the rectangular cross section conductor when ECP passed through it. The distributions of related physical parameters were calculated for carbon steel plate. Results show that a significant skin effect exists and the values of these parameters in the surface region are much larger than those in the internal region. Most of these parameters distribute in the region where the depth from surface is less than skin depth, and the physical parameters present an apparent decay oscillation varying with time. The skin effect of the decay oscillating current pulse in the rectangular cross section conductor was proved to be existed by the non uniform distribution of carbon atom of the as quenched 45 carbon steel specimens treated by ECP.
出版日期: 2016-04-01
:  O 442  
基金资助:

航空科学基金资助项目(20140876003);国家自然科学基金创新研究群体资助项目(51221004);国家自然科学基金资助项目(50675200).

通讯作者: 何闻,男,教授,博导.ORCID: 0000 0001 9089 3241.     E-mail: hewens@zju.edu.cn
作者简介: 潘龙(1988—),男,博士生,从事残余应力调控技术的研究.ORCID: 0000 0002 8585 6574. E-mail: panlong0229@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

潘龙, 陶定峰, 何闻, 顾邦平. 矩形横截面导体内衰减振荡电流脉冲的趋肤效应[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.04.005.

PAN Long, TAO Ding feng, HE Wen, GU Bang ping. Skin effect of decay oscillating current pulse in rectangular cross section conductor. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.04.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.04.005        http://www.zjujournals.com/eng/CN/Y2016/V50/I4/625

[1] STOLYAROV V V. Deformability and nanostructuring of TiNi shape memory alloys during electroplastic rolling [J]. Materials Science and Engineering A, 2009, 503(1/2): 1820.
[2] 关丽雅,郑秀华,王富耻,等. 电流密度对电铸铜晶粒组织的影响[J]. 稀有金属材料与工程,2009, 38(增1): 6.
GUAN Li ya, ZHENG Xiu hua, WANG Fu chi, et al. Influence of current density on grain structure of electroformed copper [J]. Rare Metal Materials and Engineering, 2009, 38(supple.1): 6.
[3] RAHNAMA A, QIN R S. The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot rolled 0.14% carbon steel [J]. Materials Science and Engineering A, 2015, 627: 145-152.
[4] XU X, ZHAO Y, MA B, et al. Rapid grain refinement of 2024 Al alloy through recrystallization induced by electropulsing [J]. Materials Science and Engineering A, 2014, 612: 223-226.
[5] XU X, ZHAO Y, MA B, et al. Rapid precipitation of T phase in the 2024 aluminum alloy via cyclic electropulsing treatment [J]. Journal of Alloys and Compounds, 2014, 610: 506-510.
[6] 宋辉.电流脉冲处理对钛合金板材组织和性能影响的研究[D].哈尔滨:哈尔滨工业大学,2009.
SONG Hui. Study on the effects of electropulsing on microstructures and properties of titanium alloys sheet [D]. Harbin: Harbin Institute of Technology, 2009.
[7] 张伟,隋曼龄,周亦胄,等.高密度电脉冲下材料微观结构的演变[J].金属学报,2003, 39(10): 1009-1018.
ZHANG Wei, SUI Man ling, ZHOU Yi zhou, et al. Electropulsing induced evolution of microstructures in materials [J]. Acta Metallurgica Sinica, 2003, 39(10): 1009-1018.
[8] LI X, ZHOU Q, ZHAO S, et al. Effect of pulse current on bending behavior of Ti6Al4V alloy [J]. Procedia Engineering, 2014, 81: 1799-1804.
[9] ZHU R F, LIU J N, TANG G Y, et al. The improved superelasticity of NiTi alloy via electropulsing treatment for minutes [J]. Journal of Alloys and Compounds. 2014, 584: 225-231.
[10] KUMAR P, MISHRA A, WATT T, et al. Electromagnetic jigsaw: metal cutting by combining electromagnetic and mechanical forces [J]. Procedia CIRP, 2013, 6: 600-604.
[11] BARANOV S A, STASCHENKO V I, SUKHOV A V, et al. Electroplastic metal cutting [J]. RussianElectrical Engineering, 2011, 82(9): 477-479.
[12] TANG G, ZHANG J, YAN Y, et al. The engineering application of the electroplastic effect in the cold drawing of stainless steel wire [J]. Journal of Materials Processing Technology, 2003, 137(1): 96-99.
[13] MAL′TSEV I M. Electroplastic rolling of metals with a high density current [J]. Russian Journal of Non Ferrous Metals, 2008, 49(3): 175-180.
[14] CAI Z, HUANG X. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current [J]. Materials Science and Engineering A, 2011, 528(19/20): 6287-6292.
[15] STEPANOV G V, BABUTSKII A I, MAMEEV I A, et al. Redistribution of residual welding stresses in pulsed electromagnetic treatment [J]. Strength of Materials, 2011, 43(3): 326-331.
[16] 郑建毅,何闻,施彦彬.电脉冲消除45钢淬火件的残余应力[J].浙江大学学报:工学版,2012(08): 1407-1411.
ZHENG Jian yi, HE Wen, SHI Yan bin. Eliminating residual stress in 45 steel quenching specim ens by electrical pulse [J]. Journal of Zhejiang University: Engineering Science, 2012(08): 1407-1411.
[17] TROITSKII O A, MAISTRENKO L G. Electroplastic deformation in metals [J]. Soviet Materials Science, 1974, 8(6): 686-689.
[18] KLIMOV K M, NOVIKOV I I. The “electroplastic effect”[J]. Strength of Materials, 1984, 16(2): 270-276.
[19] MOLOTSKII M I. Theoretical basis for electro and magnetoplasticity [J]. Materials Science and Engineering A, 2000, 287(2): 248-258.
[20] SUZUKI H, KANAOKA M. Theoretical investigation on skin effect factor of conductor in power cables [J]. Electrical Engineering in Japan, 2008, 156(1): 807820.
[21] KOSEK M, TRUHLAR M, RICHTER A. Skin effect in massive conductors at technical frequencies [J]. Przeglad Elektrotechniczny, 2011, 87(5): 179-185.
[22] GRIFFITHS D J. Introduction to electrodynamics [M]. Beijing: Pearson Education Asia Limited, 2006: 345-394.
[23] KAZUHIDE T A T W. An electrical resistivity study of lattice defects in deformed iron [J]. Japanese Journal of Applied Physics, 1972, 11(10): 1429-1439.
[24] http:∥zh.wikipedia.org/wiki/磁导率#cite_note hyper5[EB/OL].\[2015 03 20].
[25] CONRAD H. Effects of electric current on solid state phase transformations in metals [J]. Materials Science and Engineering A, 2000, 287(2): 227-237.

No related articles found!