Please wait a minute...
浙江大学学报(工学版)
土木工程     
软黏土中盾构掘进地层变形与掘进参数关系
李忠超1,2, 陈仁朋1,2, 孟凡衍1,2, 叶俊能3
1.浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058; 2.浙江大学 岩土工程研究所, 浙江 杭州 310058; 3.宁波市轨道交通工程建设指挥部,浙江 宁波 315012
Tunnel boring machine  tunneling-induced ground settlements in soft clay and influence of excavation parameters
LI Zhong-chao1,2, CHEN Ren-peng1,2, MENG Fan-yan1,2, YE Jun-neng3
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;  2. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China;  3. Ningbo Urban Rail Transit Project Construction Headquarters, Ningbo 315012, China
 全文: PDF(2837 KB)   HTML
摘要:

宁波地铁某区间单线隧道穿越地层主要为淤泥质黏土层,上覆地层主要为砂质粉土和淤泥质土.针对2类典型的上覆地层中土压平衡盾构施工,获取了相应的地表沉降监测数据,研究地表沉降与盾构施工过程的相互关系.采用经典高斯经验公式对盾构掘进引起的地表横向沉降曲线和纵向沉降发展曲线进行拟合,得到各监测断面沉降槽宽度ix及沉降槽宽度系数K.采用平移累积高斯沉降曲线对纵向沉降发展曲线进行拟合,获得盾构掘进引起的沿线地层损失率.研究盾构掘进参数取值对地层损失率的影响.结果表明,盾构推力、开挖面支护压力以及盾尾注浆率对地层损失率的影响显著.给出类似地层中各项盾构掘进参数的参考范围.

Abstract:

 Measurements of ground settlements induced by the construction of a single tunnel mainly in soft clay of Ningbo Metro Line were presented. The soils above tunnel were mainly sandy silt and mucky clay, and the tunnel was constructed using earth pressure balanced (EPB) tunnel boring machine. Ground settlements due to shield tunneling were back-analyzed using the classical Gaussian empirical predictions, both in the transverse and longitudinal directions. Thus the transverse settlement trough parameters ix and K were obtained. Translated Gaussian cumulative curves were proposed to better match the evolution of settlements during tunnel advancement. The ground volume loss along the alignment was obtained, and the influence of excavation parameters on the volume loss was investigated. Results indicate that the total thrust force of the shield, normalized face-support pressure and backfilling grouting ratio can markedly influence the ground volume loss. Suggested ranges of different excavation parameters were presented.

出版日期: 2015-09-10
:  TU 47  
基金资助:

国家自然科学基金资助项目(51225804,U1234204);浙江省重大科技专项重点资助项目(2011C13043)

通讯作者: 陈仁朋,男,教授     E-mail: chenrp@zju.edu.cn
作者简介: 李忠超(1987—),男,博士生,从事软土中盾构隧道和深基坑工程等对周围环境影响的研究. E-mail: 10912014@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.07.010.

LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine  tunneling-induced ground settlements in soft clay and influence of excavation parameters. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.07.010.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.07.010        http://www.zjujournals.com/eng/CN/Y2015/V49/I7/1268

[1] PECK R B. Deep excavations and tunneling in soft ground [C]∥Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City: A A Balkema, 1969: 225-290.
[2] ATTEWELL P B, WOODMAN J P. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil [J]. Ground Engineering, 1982, 15(8): 13-22.
[3] OREILLY M P, NEW B M. Settlements above tunnels in the United Kingdom-their magnitude and prediction [C]∥Tunnelling ‘82 Symposium. London: IMM, 1982:173-181.
[4] RANKINE W J. Ground movements resulting from urban tunneling: prediction and effects [C]∥ Proceedings of the 23rd Annual Conference on the Engineering Group of the Geological Society. Nottingham: Nottingham University, 1988: 79-92.
[5] MAIR R J. Settlement effects of bored tunnels, session report [C]//Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London: Balkema, 1996: 43-53.
[6] MAIR R J, TAYLOR R N. Bored tunneling in the urban environment [C]∥Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam: Balkema, 1997: 2353-2385.
[7] MAYNAR M M, RODRIGUEZ L M. Predicted versus measured soil movements induced by shield tunneling in the Madrid Metro extension [J]. Canadian Geotechnical Journal, 2005(42): 1220-1172.
[8] MCCABE B A, ORR T L L, REILLY C C, et al. Settlement trough parameters for tunnels in Irish glacial tills [J]. Tunneling and Underground Space Technology, 2012, 27(1): 112.
[9] FARGNOLIL V, BOLDINI D, AMOROSI A. TBM tunneling-induced settlements in coarse-grained soils: the case of the new Milan underground line 5 [J]. Tunneling and Underground Space Technology, 2013,38: 336-347.
[10] 魏纲. 盾构隧道施工引起的土体损失率取值及分布研究[J]. 岩土工程学报,2010,32(9):1354-1360.
WEI Gang. Selection and distribution of ground loss ratio induced by shield tunnel construction [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1354-1360.
[11] 魏纲. 盾构法隧道引起的土体变形预测 [J]. 岩石力学与工程学报,2009, 28(2):418-424.
WEI Gang. Prediction of ground deformation induced by shield tunneling construction [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 418-424.
[12] 郭玉海. 大直径土压平衡盾构引起的地表变形规律研究[J]. 土木工程学报,2013,46(11):128-137.
GUO Yu-hai. Study on ground surface movement induced by large-diameter earth pressure balance shield tunneling [J]. Chinese Civil Engineering Journal, 2013, 46(11): 128-137.
[13] CHEN R P, ZHU J, LIU W, et al. Ground movement induced by parallel EPB tunnels in silty soils [J]. Tunneling and Underground Space Technology, 2011,26: 163-171.
[14] 林存刚,张忠苗,吴世明,等. 泥水盾构掘进参数对地面沉降影响实例研究 [J]. 土木工程学报,2012,45(4):116-126.
LIN Cun-gang, ZHANG Zhong-miao, WU Shi-ming, et al. Case study of slurry shield driving parameters influence on ground surface settlements [J]. Chinese Civil Engineering Journal, 2012, 45(4): 116-126.
[15] 魏新江,周洋,魏纲. 土压平衡盾构掘进参数关系及其对地层位移影响的试验研究 [J]. 岩土力学,2013, 34(1):73-78.
WEI Xin-jiang, ZHOU Yang, WEI Gang. Research of EPB shield tunneling parameter relations and their influence on stratum displacement [J]. Rock and Soil Mechanics, 2013, 34(1): 73-78.
[16] 潘永坚,刘生财,李飚,等. 宁波市轨道交通2号线KC211标段鼓楼站~桃渡路站区间岩土工程勘察报告 [R]. 宁波:浙江省工程勘察院,2010.
PAN Yong-jian, LIU Sheng-cai, LI Biao, et al. Geotechnical engineering investigation report of the Gulou-Taodu Section of the contraction KC211 of the Ningbo Metro Line 2 [R]. Ningbo: Engineering Investigation Institute of Zhejiang Province, 2010.
[17] MOH Z C, JU D H, HWANG R N. Ground movements around tunnels in soft ground [C]∥Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London: Balkema, 1996: 725-730.
[18] DE LA FUENTE P, OTEO C. Theoretical research on the subsidence originated by the underground construction in urban areas [C]∥Proceedings of the Danube International Symposium. Romania: [s.n.], 1996.
[19] KRAUSE T. Schildvortrieb mit flüssigkeits- und erdgestützter Ortsbrust [D]. Braunschweig: Technology University of Braunschweig, 1987.
[20] 王洪新. 土压平衡盾构刀盘挤土效应及刀盘开口率对盾构正面接触压力影响研究 [J]. 土木工程学报, 2009, 42(7): 113-118.
WANG Hong-xin. Effect of cutter head compressing the front soil and influence of head aperture ratio on contact pressure of EPB shield to the front soil [J]. Chinese Civil Engineering Journal, 2009, 42(7): 113-118.

[1] 郑凌逶, 谢新宇, 谢康和, 李金柱, 刘亦民. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073.
[2] 邹圣锋, 李金柱, 王忠瑾, 兰璐, 王文军, 谢新宇. 基于GDS渗透仪的渗透试验及经验模型[J]. 浙江大学学报(工学版), 2017, 51(5): 856-862.
[3] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[4] 项国圣, 方圆, 徐永福. 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 931-936.
[5] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[6] 胡亚元. 非饱和多孔岩石的热力学本构理论[J]. 浙江大学学报(工学版), 2017, 51(2): 255-263.
[7] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[8] 袁炳祥, 吴跃东, 陈锐, 冯仲文, 汪亦显. 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 2031-2036.
[9] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[10] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[11] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[12] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[13] 胡亚元, 杨秋华. YinGraham流变模型沉降简化计算统一公式[J]. 浙江大学学报(工学版), 2016, 50(6): 1009-1017.
[14] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[15] 陈仁朋,孟凡衍,李忠超,叶跃鸿,胡琦. 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报(工学版), 2016, 50(5): 856-863.