Please wait a minute...
浙江大学学报(工学版)
自动化技术、信息技术     
基于动态数据驱动的突发水污染事故仿真方法
宋筱轩,冯天恒,黄平捷,侯迪波,张光新
浙江大学 工业控制技术国家重点实验室, 浙江 杭州 310027
Sudden water pollution simulation method based on dynamic data-driven techniques
SONG Xiao-xuan, FENG Tian-heng, HUANG Ping-jie, HOU Di-bo, ZHANG Guang-xin
State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(931 KB)   HTML
摘要:

提出基于动态数据驱动的误差修正方法.结合城市供水水质安全预警系统仿真分析服务功能的建立,阐述动态数据驱动的突发水污染事故预测误差修正基本原理,以正向建模、模型封装与调用、初始仿真和模型修正等为主线研究技术实现的方法.研究模型边界更新法、模型参数更新法、模型结果校正法3种实现模型校正的技术.采用2个试验例子进行有效性验证.试验结果表明,由于引入了反馈机制,水质污染演化模拟仿真结果得到了实时修正,减少了不确定因素对仿真输出的影响,结果的准确性和可靠性得到了提高.

Abstract:

A simulation errors correction method was proposed based on dynamic data-driven techniques. Basic principle of the method was analyzed combined with the development of the simulation analysis service for a urban water quality early warning system. The implementation of the key steps, including forward modeling, model encapsulation and calling, the initial simulation and model correction, were investigated. Three model correction methods were focused on, including the model boundary updating method, model parameters updating method and model results correction method. The application of the model correction techniques was demonstrated using two test examples. Experimental results showed that the simulation results were optimized owning to the feedback mechanism. The impact of uncertainty was reduced, and the accuracy and reliability of simulation results were improved.

出版日期: 2018-06-06
:  TP 206  
基金资助:

水体污染控制与治理科技重大专项资助项目(2008ZX07420-004);国家自然科学基金资助项目(41101508);浙江省科技厅公益资助项目(2014C33025)

通讯作者: 黄平捷, 男, 副教授     E-mail: huangpingjie@zju.edu.cn
作者简介: 宋筱轩(1986-),男,博士生,从事突发水污染事故仿真模拟的研究. E-mail:zjusxx@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

宋筱轩,冯天恒,黄平捷,侯迪波,张光新. 基于动态数据驱动的突发水污染事故仿真方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.01.010.

SONG Xiao-xuan, FENG Tian-heng, HUANG Ping-jie, HOU Di-bo, ZHANG Guang-xin. Sudden water pollution simulation method based on dynamic data-driven techniques. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.01.010.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.01.010        http://www.zjujournals.com/eng/CN/Y2015/V49/I1/63

[1] OUYANG Y, ZHANG J E, LUO S M. Dynamic data driven application system: recent development and future perspective [J]. Ecological Modeling, 2007, 204(1/2): 18.
[2] 周云,黄柯棣,胡德文. 动态数据驱动应用系统的概念研究[J]. 系统仿真学报, 2009, 21(8): 2138-2141.
ZHOU Yun, HUANG Ke-di, HU De-wen. Conceptual study on dynamic data driven application system [J]. Journal of System Simulation, 2009, 21(8): 2138-2141.
[3] 李林子, 钱瑜, 张玉超. 基于EFDC和WASP模型的突发水污染事故影响的预测预警[J]. 长江流域资源与环境, 2011, 20(8): 1010-1016.
LI Lin-zi, QIAN Yu, ZHANG Yu-chao. Forecasting and warning the accidental water pollution effect based on the EFDC and WASP [J]. Resources and Environment in the Yangtze Basin, 2011, 20(8): 1010-1016.
[4] WANG C, FENG Y J, ZHAO S S, et al. A dynamic contaminant fate model of organic compound: a case study of Nitrobenzene pollution in Songhua River, China [J]. Chemosphere, 2012, 88(1): 69-76.
[5] RAUCH W, HENZE M, KONCSOS L, et al. River water quality modeling: I. state of the art [J]. Water Science and Technology, 1998, 38(11): 237-244.
[6] 孙醒龙. 基于服务模板的自适应工作流建模及动态执行研究[D]. 上海: 上海交通大学, 2011: 15-25.
SUN Xing-long. Research on adaptive workflow modeling and dynamic execution based on service template [D]. Shanghai: Shanghai Jiaotong University, 2011:15-25.
[7] 张荣梅. Visual C++程序设计案例教程[M]. 北京: 北京大学出版社, 2009.
[8] 李清毅, 周昊, 林阿平,等.基于网格搜索和支持向量机的灰熔点预测[J]. 浙江大学学报:工学版, 2011, 45(12): 2181-2187.
LI Qing-yi, ZHOU Hao, LIN A-ping, et al. Prediction of ash fusion temperature based on grid search and support vector machine [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(12): 2181-2187.
[9] 周全. 洪水预报实时校正方法研究[D]. 南京: 河海大学, 2005: 9-16.
ZHOU Quan. Research on the real-time co-correction method in flood forecasting [D]. Nanjing: Hohai University, 2005: 9-16.
[10] WERNER M, REGGIANI P, ROO A D, et a1. Flood forecasting and warning at the river basin and at the European scale [J]. Natural Hazards, 2005, 36(1/2): 25-42.
[11] 杨叔子, 吴雅, 轩建平, 等. 时间序列分析的工程应用[M]. 2版. 武汉: 华中科技大学出版社, 2007.
[12] ZHANG B, QIN Y, HUANG M X, et al. SD–GIS-based temporal–spatial simulation of water quality in sudden water pollution accidents [J]. Computers and Geosciences, 2011, 37(7): 874-882.
[13] 中国环境规划院. 全国水环境容量核定技术指南[R]. 中国: 环境规划院, 2003.
Chinese Academy for Environmental Planning. National technical manual of water environmental capacity calculation [R]. P.R.China: Chinese Academy for Environmental Planning, 2003.
[14] SEO I W, CHEONG T S. Predicting longitudinal dispersion coefficient in natural streams [J]. Journal of Hydraulic Engineering, 1998, 124(1): 25-32.
[15] 赵龙舫. 河流突发性水污染事件实时预警方法研究及系统实现[D]. 杭州: 浙江大学, 2013: 36-50.
ZHAO Long-fang. Research on real-time early warning methods and system of rivers accidental water pollution events [D]. Hangzhou: Zhejiang University, 2013: 36-50.

[1] 董红召, 章丽萍, 刘冬旭, 陈宁. 公共自行车系统服务点布设的有限元估算方法[J]. 浙江大学学报(工学版), 2017, 51(6): 1097-1103.
[2] 董红召, 吴满金, 刘冬旭, 陈宁. 城市公共自行车系统自然租赁需求估算方法[J]. 浙江大学学报(工学版), 2016, 50(2): 265-270.
[3] 黄克, 周奇才, 赵炯, 熊肖磊. 盾构液压系统状态预测[J]. J4, 2013, 47(8): 1437-1443.
[4] 罗竹辉, 魏燕定, 周晓军, 魏春雨. 六自由度平台车辆运动模拟器变输入洗出算法[J]. J4, 2013, 47(2): 238-243.