Please wait a minute...
J4  2014, Vol. 48 Issue (4): 589-593    DOI: 10.3785/j.issn.1008-973X.2014.04.005
电气工程     
基于磁放大器的新型可调电抗器的应用
林克曼1, TOMSOVIC Kevin2, 万秋兰1
1. 东南大学 电气工程学院,江苏 南京 210018;2. University of Tennessee, EECS,Knoxville 37921, USA
Application of magnetic amplifier-based adjustable reactor
LIN Ke-man1, TOMSOVIC Kevin2, WAN Qiu-lan1
1. College of Electrical Engineering, Southeast University, Nanjing 210018, China; 2. Department of Electrical  Engineering and Computer Science, University of Tennessee, Knoxville 37921, USA
 全文: PDF(663 KB)   HTML
摘要:

针对可控串联补偿问题,由于电力电子装置造价高昂,结构复杂,研究基于直流磁控可调电抗器的新型磁放大器.与现有的直流磁控可调电抗器相比,结构简单,响应速度快,电抗值线性可调.分析该磁放大器的运行原理,建立磁放大器控制模型,探讨该装置在抑制电力系统低频振荡中的应用.通过对发电机和磁控放大器的动态建模,计算获得控制器参数,应用电磁暂态仿真软件(PSCAD)验证了新型磁放大器抑制和缓解低频振荡的有效性.

Abstract:

The power electronic devices have disadvantages including high cost and complex control facility. In order to solve the problem, magnetic amplifier was presented as a new approach to improve the system stability based on magnetically saturating reactor concept. The new device has more simple structure, smaller response time and linear output reactance. The operation principles of the magnetic amplifier were analyzed, and the model was built. A control strategy was proposed to demonstrate the application of the new device for damping low-frequency oscillation in single-machine infinite-bus system. A comparative analysis of the controller’s performance was conducted. The experiments were developed by power systems CAD (PSCAD). Results verified the effectiveness of controller in damping low-frequency oscillations.

出版日期: 2014-09-03
:  TM 761  
基金资助:

美国国家能源部资助项目(DE-AC05-00OR22725).

通讯作者: 万秋兰,女,教授.     E-mail: qlwan@seu.edu.cn.
作者简介: 林克曼(1987—),女,博士生,从事电力系统运行与控制的研究.E-mail: 230109364@seu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林克曼, TOMSOVIC Kevin, 万秋兰. 基于磁放大器的新型可调电抗器的应用[J]. J4, 2014, 48(4): 589-593.

LIN Ke-man, TOMSOVIC Kevin, WAN Qiu-lan. Application of magnetic amplifier-based adjustable reactor. J4, 2014, 48(4): 589-593.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.04.005        http://www.zjujournals.com/eng/CN/Y2014/V48/I4/589

[1] 李达义,陈乔夫,贾正春.基于磁通可控的可调电抗器的新原理[J].中国电机工程学报, 2003, 23(2): 116-120.

LI Da-yi, CHEN Qiao-fu, JIA Zheng-chun. A novel principle of adjustable reactor based on magnetic flux controllable [J]. Proceedings of the CSEE, 2003, 23(2): 116-120.

[2] 牟宪民,王建赜,魏晓霞,等.新型正交铁心可控电抗器[J].中国电机工程学报,2008, 28(21): 57-62.

MOU Xian-min, WANG Jian-ze, WEI Xiao-xia, et al. Novel ferrite orthogonal core controllable reactor [J]. Proceedings of the CSEE, 2008, 28(21): 57-62.

[3] HONG H, ZHANG J, SONG M, et al. Magnetization study on a new type of orthogonally configured magnetic core structure and its potential application to superconducting controllable reactors [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 1051-1054.

[4] 朱宝森,关毅,陈庆国,等.正交磁化可控电抗器的设计与特性分析[J].电机与控制学报,2012, 16(5): 26-32.

ZHU Bao-sen, GUAN Yi, CHEN Qing-guo, et al. Design and characteristics analysis of orthogonal magnetization controllable reactor [J]. Electric Machines and Control, 2012, 16(5): 26-32.

[5] 同向前,薛钧义.电子式连续可调电抗器的控制特性[J].电力自动化设备, 2005, 25(1): 25-27.

TONG Xiang-qian, XUE Jun-yi. Control characteristics of electronic continuously tunable reactor [J]. Electric Power Automation Equipment, 2005, 25(1): 25-27.

[6] 张宇,陈乔夫,程路,等.基于磁通补偿的高压大容量可控电抗器[J].电工技术学报,2009, 24(3): 93-98.

ZHANG Yu, CHEN Qiao-fu, CHENG Lu, et al. A high-voltage and large-capacity controllable reactor based on magnetic flux compensating [J]. Transactions of China Electrotechnical Society, 2009, 24(3): 93-98.

[7] 田铭兴,安潇,顾生杰,等.磁饱和式和变压器式可控电抗器的电压控制方法及其仿真分析[J].高电压技术,2013, 39(4): 791-796.

TIAN Ming-xing, AN Xiao, GU Sheng-jie, et al. Voltage-controlling methods and simulation analysis of magnetically saturated and transformer-type controllable reactors [J]. High Voltage Engineering, 2013, 39(4): 791-796.

[8] MOJTABA N, MEHRDAD G, GORAN A, et al. A robust control strategy for shunt and series reactive compensators to damp electromechanical oscillations [J]. IEEE Transactions on Power Delivery, 2001, 16(4): 812–817.

[9] DIVAN D, BRUMSICKLE W, SCHNEIDER R, et al. A distributed static series compensator system for realizing active power flow control on existing power lines [C]∥Power Systems Conference and Exposition. New York: IEEE, 2004: 654-661.

[10] GYUGYI L, SCHAUDER C D, SEN K K. Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines [J]. IEEE Transactions on Power Delivery, 1997, 12(1): 406-417.

[11] DELROSSO A D, CANIZARES C A, DONA V M. A study of TCSC controller design for power system stability improvement [J]. IEEE Transactions on Power Systems, 2003, 18(4): 1487-1496.

[12] 郭春林,童陆园.多机系统中可控串补(TCSC)抑制功率振荡的研究[J].中国电机工程学报,2004, 24(6): 1-6.

GUO Chun-lin, TONG Lu-yuan. Application of TCSC to damp oscillations in multi-machine systems [J]. Proceedings of the CSEE, 2004, 24(6): 1-6.

[13] 林宇锋,徐政,黄莹.TCSC功率振荡阻尼控制器的设计[J].电网技术,2005,29(22): 35-39.

LIN Yu-feng, XU Zheng, HUANG Ying. Design of TCSC auxiliary controller for inter-Area power oscillation damping [J]. Power System Technology, 2005, 29(22): 35-39.

[14] 王铁强,贺仁睦,王卫国,等.电力系统低频振荡机理的研究[J].中国电机工程学报,2002,22(2): 21-25.

WANG Tie-qiang, HE Ren-mu, WANG Wei-guo, et al. The mechanism study of low frequency oscillation in power system [J]. Proceedings of the CSEE, 2002, 22(2): 21-25.

No related articles found!