Please wait a minute...
J4  2013, Vol. 47 Issue (2): 267-272    DOI: 10.3785/j.issn.1008-973X.2013.02.012
能源工程     
镁在水蒸气中着火特性和模型分析
韩志江1, 周俊虎1, 杨卫娟1, 杨成虎1,2, 刘建忠1, 岑可法1
1.浙江大学 能源清洁利用国家重点实验室,浙江 杭州310027;2.上海空间推进研究所,上海200213
Experimental and model study on ignition of magnesium in steam
HAN Zhi-jiang1, ZHOU Jun-hu1, YANG Wei-juan1, YANG Cheng-hu1,2,
LIU Jian-zhong1, CEN Ke-fa1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
2. Shanghai Institute of SpaI3e Propulsion,Shanghai 200213, China
 全文: PDF  HTML
摘要:

为研究镁在水蒸气中着火特性,采用可视化密闭燃烧器对镁颗粒进行加热后,观测到颗粒表面重复着氧化层沉积、破碎并剥落的过程,表面光泽明暗交替,直至发生着火.在高温管式炉上,研究加热速率、水蒸气质量分数和粒径对镁颗粒着火温度和着火延迟时间的影响规律.镁在水蒸气中着火前的反应主要是镁蒸发控制的均相反应,表面反应可以忽略.计算得到水蒸气中镁着火的活化能为150 kJ/mol.建立常压下水蒸气中镁颗粒着火的能量方程,采用突变理论中的尖点突变模型分析水蒸气中镁的着火动力学过程,计算不同粒径的镁颗粒在静止水蒸气环境中的着火温度和着火延迟时间.结果表明,对于粒径小于50 μm的镁颗粒,着火延迟时间不超过20 ms.

Abstract:

 The ignition characteristics of magnesium particles in steam were studied. A magnesium particle was heated in a visualizing enclosed burner and the ignition process was observed. Depositing, breaking and peeling of the oxide cap happen repeatedly on the particle surface, and the surface becomes bright and dark alternately until the particle is ignited. The effects of heating rate, steam concentration and particle diameter on ignition temperature and ignition delay time of magnesium in steam were studied by using a tube reactor. The ignition of magnesium in steam is controlled by the homogeneous reaction and the heterogeneous reaction can be ignored. The energy equation of the magnesium ignition in steam on normal pressure was set up. The activity energy of ignition in steam was calculated and the value of 150 kJ/mol was gained. The ignition kinetics was analyzed by the catastrophic model. Ignition temperature and ignition time of magnesium particles with different diameter in stationary steam were predicted. The ignition delay time is less than 20 ms for the magnesium particles which are smaller than 50 μm.

出版日期: 2013-02-01
:  TK 16  
通讯作者: 杨卫娟,女,副教授.     E-mail: yanwj@zju.edu.cn
作者简介: 韩志江(1984—),男,博士生,主要从事金属燃料燃烧研究.E-mail: hanzj1@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

韩志江, 周俊虎, 杨卫娟, 杨成虎, 刘建忠, 岑可法. 镁在水蒸气中着火特性和模型分析[J]. J4, 2013, 47(2): 267-272.

HAN Zhi-jiang, ZHOU Jun-hu, YANG Wei-juan, YANG Cheng-hu. Experimental and model study on ignition of magnesium in steam. J4, 2013, 47(2): 267-272.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.02.012        http://www.zjujournals.com/eng/CN/Y2013/V47/I2/267

[1] 李芳,张为华,张炜,等.水反应金属燃料能量特性分析[J].固体火箭技术,2005,28(4): 256-259.
LI Fang, ZHANG Wei-hua, ZHANG Wei, et al. Analysis on energy characteristics of hydro reactive metal fuel [J]. Journal of Solid Rocket Technology, 2005, 28 (4): 256-259.
[2] 李是良,张炜,张为华,等.镁基水反应金属燃料及水冲压发动机初步试验[J].国防科技大学学报,2007,29(1): 35-38.
LI Shi-liang, ZHANG Wei, ZHANG Wei-hua, et al. Primary experimental study engine and the on the performance of waterramjet magnesium-based Fuel [J]. Journal of National University of Defense Technology, 2007, 29(1): 35-38.
[3] MILLER T F, HERR J D. Green rocket propulsion by reaction of al and Mg powders and water[C]∥ 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale. Florida: American Institute of Aeronautics and Astronautics, 2004.
[4] STEINFELD A, KUHN P, RELLER A, et al. Solar-processed metals as clean energy carriers and water-splitters \
[J\]. International Journal of Hydrogen Energy, 1998, 23: 767-774.
[5] GAVEZ M E, FREI A, ALBISETTI G, et al. Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions-Thermodynamic and kinetic analyses [J]. International Journal of Hydrogen Energy, 2008; 33: 2880-2890.
[6] ROBERTS T A, BURTON R L, KRIER H. Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures [J]. Combustion and Flame, 1993, 92: 125-143.
[7] BOIKO V M, LOTOV V V, PAPYRIN A N. Ignition of gas suspensions of metallic powders in reflected shock waves [J]. Combustion, Explosion, and Shock Waves, 1989, 25, (2): 193-199.
[8] PETUKHOVA E V, FEDOROV A V. Ignition of magnesium particles near the end of a shock tube [J]. Combustion, Explosion, and Shock Waves, 1991, 27 (6): 778-780.
[9] BRANSFORD J W. Laser-initiated combustion studies on metallic alloys in pressureized oxygen [R]. In NBSIR 84-3013, Washington D C: National Bureau of Standards, 1984.
[10] TAKENO T, YUASA S. Ignition of magnesium and magnesium-aluminum alloy by impinging hot-air stream [J]. Combustion Science and Technology, 1980, 21: 109-121
[11] 岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州: 浙江大学出版社,2002: 32-42.
[12] SHEVTSOV V I, FURSOV V P, STESIK L N. Mechanism for combustion of isolated magnesium particles \
[J\]. Combustion, Explosion, and Shock Waves, 1976, 12: 758-763.
[13] VALOV A E, GUSACHENKO E I, Shevtsov V I. Influence of the pressure of the oxidative medium and the oxygen concentration on the ignition of single magnesium particles [J]. Combustion, Explosion, and Shock Waves, 1991, 27: 393-396.
[14] TIMOTH F M, ALEJANDRINA B G. Finite rate calculations of magnesium combustion in vitiated oxygen and steam atmospheres [C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale. San Diego, California:  American Institute of Aeronautics and Astronautics: 2006.
[15] 托姆雷.结构稳定与形态发生学[M].成都: 四川教育出版社,1992: 49-115.

[1] 杨文闯, 杨卫娟, 周志军, 袁炜东, 陈瑶姬, 周俊虎, 岑可法. 不同二次风角度的W炉冷态流场实验研究[J]. J4, 2013, 47(1): 139-145.
[2] 梁军辉, 黄群星, 冯玉霄, 池涌, 严建华. 氧体积分数对乙烯扩散火焰中烟黑生成影响的实验[J]. J4, 2012, 46(8): 1465-1471.
[3] 陈瑶姬,周志军,周宁,杨卫娟,刘建忠,周俊虎,岑可法. 贵州无烟煤的燃烧特性和NOx排放特性试验[J]. J4, 2011, 45(11): 2020-2025.
[4] 杜聪, 黄镇宇, 刘建忠, 赵子通, 李波, 周俊虎, 岑可法. 大容量空气雾化水煤浆喷嘴的实验研究[J]. J4, 2011, 45(4): 727-733.
[5] 周俊虎,汪洋,杨卫娟,刘建忠,王智化,岑可法. 不同外部风温对微尺度火焰的影响[J]. J4, 2011, 45(1): 146-150.