Please wait a minute...
J4  2013, Vol. 47 Issue (2): 256-260    DOI: 10.3785/j.issn.1008-973X.2013.02.010
机械工程     
神经电极-脑组织界面微动环境力学特性仿真
吴栋栋1, 张文光, MERCERON Gilles1,2, 罗云1
1. 上海交通大学 机械系统与振动国家重点实验室 上海 200240;2. 法国国立高等技术学院 法国
Mechanical simulation of neural electrode-brain tissue interface
under different micro-motion conditions
WU Dong-dong1, ZHANG Wen-guang1, MERCERON Gilles1,2, LUO Yun1
1. State key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China;
2. Arts&Métiers ParisTech, France
 全文: PDF  HTML
摘要:

为了解决电极的长期寿命问题,采用有限元方法对电极-脑组织界面的微动进行静态分析和瞬态分析,基于商用电极A1x16-3-100-413进行建模,研究微动频率f和电极界面黏附状态对电极-脑组织界面力学状态的影响.结果表明,f对等效应力σ最大值有显著影响,高频率比低频率更不利于电极的长期稳定性,且存在临界值;f在20 Hz左右时σ接近最大值,超过20 Hz后f的影响减小;电极与脑组织之间的物理耦合度对界面力学状态有较大影响,增强电极和脑组织的黏附程度,可以有效减小微电极尖端和神经组织间的应力、应变以及分层,从而提高电极使用寿命.

Abstract:

In order to improve the long-term stability of the brain implanted electrode, the finite-element simulation had been used for the static analysis and transient analysis. In particular, the effects of micro-motion-s frequency and friction state on the mechanical state of the probe-brain tissue interface had been investigated based on the commercial electrode, A1x16-3-100-413. The results demonstrate that micro-motion frequency has a great effect on the maximal Von Mises stress observed on the model, indicating that higher frequencies are more harmful than lower frequencies in terms of long-term stability of the electrode. And there exists a critical value: when the value of frequency is 20 Hz, the stress is nearly to the maximum, followed by the decreased influence of frequency. The results also show that physical coupling degree between the electrode and the brain tissue has a significant influence on the interface mechanical state. Enhancing the attachment between the electrode and the brain can effectively decrease the stress, strain and delamination of the microelectrode tip with respect to the adjacent neural tissue, thus improve the working life of implanted electrode.

出版日期: 2013-02-01
:  R 318.01  
基金资助:

国家自然科学基金项目资助项目(51175334);上海交通大学医工(理)交叉基金资助项目(YG2010MS89);机械系统与振动国家重点实验室自主课题(MSVZD201110).

通讯作者: 张文光,男,副教授.     E-mail: zhwg@sjtu.edu.cn
作者简介: 吴栋栋(1988—),男,硕士生,主要从事神经电极方向的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴栋栋, 张文光, MERCERON Gilles, 罗云. 神经电极-脑组织界面微动环境力学特性仿真[J]. J4, 2013, 47(2): 256-260.

WU Dong-dong, ZHANG Wen-guang, MERCERON Gilles, LUO Yun. Mechanical simulation of neural electrode-brain tissue interface
under different micro-motion conditions. J4, 2013, 47(2): 256-260.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.02.010        http://www.zjujournals.com/eng/CN/Y2013/V47/I2/256

[1] BIRAN R, MARTIN D C, TRESCO P A. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull [J]. Journal of Biomedical Materials Research Part A, 2007, 82A(1): 169-178.
[2] QUA Xiang-hua, QIONG Wua, ZHANG Kun-yang, et al. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: Biodegradation and tissue reactions [J]. Biomaterials, 2006, 27(19): 3540-3548.
[3] MCCONNELL G C, REES H D, LEVEY A I, et al. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration [J]. Journal of Neural Engineering, 2009, 6(5): 12.
[4] CHEUNG K. Implantable microscale neural interfaces [J]. Biomedical Microdevices, 2007, 9(6): 923-938.
[5] SEYMOUR J P, KIPKE D R. Neural probe design for reduced tissue encapsulation in CNS [J]. Biomaterials, 2007, 28(25): 3594-3607.
[6] MCCONNELL G C, SCHNEIDER T M, OWENS D J, et al. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain [J]. Biomedical Engineering, IEEE Transactions on, 2007, 54(6): 1097-1107.
[7] PATIL P G, TURNER D A. The development of brainmachine interface neuroprosthetic devices [J]. Neurotherapeutics, 2008, 5(1): 137-146.
[8] MOXON K A, HALLMAN S, SUNDARAKRISHNAN A, et al. Longterm recordings of multiple, single-neurons for clinical applications: the emerging role of the bioactive microelectrode [J]. Materials, 2009, 2(4): 1762-1794.
[9] AARON G, JIT M. Brain micromotion around implants in the rodent somatosensory cortex [J]. Journal of Neural Engineering, 2006, 3(3): 189.
[10] VHSYRINKI M, TUUKKANEN T, SORVOJA H, et al. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution [J]. Journal of Neuroscience Methods, 2009, 180(2): 290-295.
[11] LEE A K, J EPSZTEIN, BRECHT M. Headanchored wholecell recordings in freely moving rats [J]. Nat Protocols, 2009, 4(3): 385-392.
[12] MERCANZINI A, K CHEUNG, BUHL DL, et al. Demonstration of cortical recording using novel flexible polymer neural probes [J]. Sensors and Actuators A: Physical, 2008, 143(1): 90-96.
[13] LEE H, BELLAMKONDA R V, SUN W, et al. Biomechanical analysis of silicon microelectrode-induced strain in the brain [J]. Journal of Neural Engineering, 2005, 2(4): 81.
[14] JEYAKUMAR S, MARTIN D C, DARYL R K. A finiteelement model of the mechanical effects of implantable microelectrodes in the cerebral cortex [J]. Journal of Neural Engineering, 2005, 2(4): 103.
[15] NAZARI M A, P PERRIER, CHABANAS M, et al. Simulation of dynamic orofacial movements using a constitutive law varying with muscle activation [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13(4): 469-482.
[16] HRAPKO M, J A W VAN DOMMELEN, PETERS G W, et al. The influence of test conditions on characterization of the mechanical properties of brain tissue [J]. Journal of Biomechanical Engineering, 2008, 130(3): 031003-031010.
[17] NICOLLE S, LOUNIS M, WILLINGER R, et al. Shear linear behavior of brain tissue over a large frequency range [J]. Biorheology, 2005, 42(3): 209-223.
[18] HRAPKO M, VAN DOMMELEN J A W, PETERS G W M, et al. The mechanical behaviour of brain tissue: Large strain response and constitutive modelling [J]. Biorheology, 2006, 43(5): 623-636.

No related articles found!