Please wait a minute...
J4  2012, Vol. 46 Issue (11): 2035-2043    DOI: 10.3785/j.issn.1008-973X.2012.11.016
计算机技术     
并行磁共振图像的非二次正则化保边性重建
刘晓芳1,2,叶修梓3,张三元1,张引1
1.浙江大学 计算机科学与技术学院,浙江 杭州 310027;2.中国计量学院 信息工程学院,浙江 杭州 310018
3.温州大学 数学与信息科学学院,浙江 温州 325035
Non-quadratic regularized edge-preserving reconstruction for
parallel magnetic resonance image
LIU Xiao-fang1,2,YE Xiu-zi 3,ZHANG San-yuan 1,ZHANG Yin 1
1.College of Computer Science, Zhejiang University, Hangzhou 310027, China;
2. Institute of Information Engineering, China Jiliang University, Hangzhou 310018, China
3.College of Mathematics & Information Science, Wenzhou University, Wenzhou,325035, China
 全文: PDF  HTML
摘要:

针对并行磁共振在欠采样率较高情况下重建图像存在的混迭伪影和噪声问题,提出一种非二次正则化的保边性图像重建算法.基于SENSE技术,该算法以保边平滑性的非二次凸函数为正则化项,构建一个非二次代价函数,并运用非线性共轭梯度算法求解该最小化问题,实现并行磁共振图像的保边性重建.为了评价算法的有效性和鲁棒性,以归一化均方误差作为评价准则,分析并行磁共振欠采样率最大时真实数据和仿真数据的图像重建.结果表明,该算法显著减少欠采样率较高时并行磁共振图像的混迭伪影,并能够有效抑制噪声和保留边缘信息.相比于其他图像重建算法,该算法能够快速收敛.

Abstract:

Aiming at the images of poor quality resulted from the aliasing artifacts and noise in parallel magnetic resonance imaging,which was reconstructed from  high reduction undersampling sensitivityencoding data, a non-quadratic regularized edge-preserving reconstruction algorithm was proposed. Based on Sensitivity Encoding technique, the algorithm used an edge-preserving nonquadratic convex function as the regularization term, and then a non-quadratic cost function was constructed. Using nonlinear conjugate gradient method, reconstruction image was obtained by minimizing the objective function. In order to evaluate the robust and validity of the proposed algorithm, analysis on severe undersampling data  was presented and discussed. Based on the analysis indicator known as normalized mean squared error, the results show that for high acceleration factors, the proposed algorithm evidently reduces the aliasing artifacts in the reconstruction images, and noise is effectively restrained as well as edge information is preserved. Furthermore, the proposed algorithm can be quick convergence.

出版日期: 2012-12-11
:  TP 391.4  
基金资助:

国家“973”重点基础研究发展规划资助项目(2009CB320804);国家自然科学基金资助项目(61272304);国家青年科学基金资助项目(30900332);广东省教育部产学研结合资助项目(2010B090400193,2011B090400546).

通讯作者: 叶修梓 男 教授,博导.     E-mail: syzhang@zju.edu.cn
作者简介: 刘晓芳(1974- )女,副教授,从事医学成像、图像处理、医学信号处理.E-mail: liuxfang@cjlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘晓芳,叶修梓,张三元,张引. 并行磁共振图像的非二次正则化保边性重建[J]. J4, 2012, 46(11): 2035-2043.

LIU Xiao-fang,YE Xiu-zi ,ZHANG San-yuan ,ZHANG Yin. Non-quadratic regularized edge-preserving reconstruction for
parallel magnetic resonance image. J4, 2012, 46(11): 2035-2043.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.11.016        http://www.zjujournals.com/eng/CN/Y2012/V46/I11/2035

[1] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE:sensitivity encoding for fast MRI [J]. Magnetic Resonance in Medicine, 1999, 42(5): 952-962.
 [2] GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)  [J]. Magnetic Resonance in Medicine, 2002, 47(6): 1202-1210.
 [3] MCKENZIE C A, YEH E N, OHLIGER M A, et al. Selfcalibrating parallel imaging with automatic coil sensitivity extraction [J]. Magnetic Resonance in Medicine, 2002, 47(3): 529-538.
 [4] HANSEN P C. Rankdeficient and discrete Illposed problems: numerical aspects of linear inversion [M]. SIAM Monographs on Mathematical Modeling and Computation,philadetphia:SIAM, 1997: 1-16.
 [5] RIBES A, SCHMITT F. Linear inverse problems in imaging: An introductory survey [J]. IEEE Signal Processing Magazine, 2008,25(4): 84-99.
 [6] LIANG Z P, BAMMER R, JI J, et al. Making better SENSE: wavelet denoising, Tikhonov regularization, and totalleast squares [C]∥ Processing of the 10th Annual Meeting of ISMRM, Honolulu. HI: ISMRM, 2002: 2388.
 [7] OMER H, DICKINSON R. Regularization in parallel MR image reconstruction  [J]. Concepts in Magnetic Resonance Part A, 2011, 38A(2): 52-60.
 [8] LIN F H, WANG F N, AHLFORS S P, et al. Parallel MRI reconstruction using variance partitioning regularization [J]. Magnetic Resonance in Medicine, 2007, 58(4): 735-744.
 [9] RAJ A, SINGH G, ZABIH R, et al. Bayesian parallel imaging with edgepreserving priors [J]. Magnetic Resonance in Medicine, 2007, 57(1): 8-21.
 [10] DONOHO D L. Compressive sensing [J]. IEEE Trans. on Information Theory, 2006, 52(4): 1289-1306.
 [11] LUSTIG M, DONOHO D L, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
 [12] LIANG D, LIU B, WANG J J, et al. Accelerating SENSE using compressed sensing [J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574-1584.
[13] WU B, MILLANE R P, WATTS R, et al.Prior estimatebased compressed sensing in parallel MRI  [J]. Magnetic Resonance in Medicine, 2011, 65(1): 83-95.
 [14] FANG S, YING K, ZHAO L, et al. Cohere regularization for SENSE reconstruction with a nonlocal operator(CORNOL) [J]. Magnetic Resonance in Medicine, 2010, 64(5): 1414-1426.
 [15] LIANG D, WANG H F, CHANG Y C, et al. Sensitivity encoding reconstruction with nonlocal total variation regularization [J]. Magnetic Resonance in Medicine, 2010, 65(5): 1384-1392.
 [16] GILDOA G, OSHER S. Nonlocal operators with applications to image processing [J]. Multiscale Model Simul, 2008, 7(3): 1005-1028.
 [17] FESSLER J  A. Modelbased image reconstruction for MRI [J]. IEEE Signal Processing Magazine, 2010, 27(4): 81-89.
 [18] KUNSCH H R.. Robust priors for smoothing and image restoration  [J].Ann. Inst. Stat. Math, 1994, 46 (1): 1-19.
 [19] JI J X, SON J B, RANE S D. PULSAR: A MATLAB Toolbox for parallel magnetic resonance imaging using array coils and multiple channel receivers [J]. Concepts in Magnetic Resonance Part B, 2007, 31B(1): 24-36.
 [20] PRUESSMANN K P. Encoding and reconstruction in parallel MRI [J]. NMR in Biomed, 2006, 19(3): 288-299.
 [21] PRUESSMANN K P, WEIGER M, BOMERT P, et al. Advances in sensitivity encoding with arbitrary kspace trajectories [J]. Magnetic Resonance in Medicine, 2001, 46(4): 638-651.
 [22] LIU B, KING K, STECKNER M, et al. Regularized sensitivity encoding (SENSE)reconstruction using bregman iterations [J]. Magnetic Resonance in Medicine, 2009, 61: 638-651.
 [23] AFONSO M V, BIOUCSADIAS J M, FIGUEIREDO. Fast image recovery using variable splitting and constrained optimization [J]. IEEE Trans. on Image Processing, 2010, 19(9): 2345-2356.
 [24] VOGEL C R. Computational methods for inverse problems [M]. The SIAM series on Frontiers in Applied Mathematics. Frontiers in applied mathematics, philadelphia:SIAM,2002: 29-39.

[1] 徐嵩,孙秀霞,何衍. 利用直线段成像特性的摄像机畸变迭代标定方法[J]. J4, 2014, 48(3): 404-413.
[2] 谢天, 解利军, 宋广华, 郑耀. 基于平面颜色分布的增强现实自然特征注册算法[J]. J4, 2013, 47(12): 2243-2252.
[3] 杨冰, 许端清, 杨鑫, 赵磊, 唐大伟. 基于艺术风格相似性规则的绘画图像分类[J]. J4, 2013, 47(8): 1486-1492.
[4] 杨帮华, 何美燕, 刘丽, 陆文宇. 脑机接口中基于BISVM的EEG分类[J]. J4, 2013, 47(8): 1431-1436.
[5] 楼晓俊, 孙雨轩, 刘海涛. 聚类边界过采样不平衡数据分类方法[J]. J4, 2013, 47(6): 944-950.
[6] 孟子博, 姜虹, 陈婧, 袁波, 王立强. 基于特征剪裁的AdaBoost算法及在人脸检测中的应用[J]. J4, 2013, 47(5): 906-911.
[7] 何智翔, 丁晓青, 方驰, 文迪. 基于LBP和CCS-AdaBoost的多视角人脸检测[J]. J4, 2013, 47(4): 622-629.
[8] 张远辉,韦巍. 在线角速度估计的乒乓球机器人视觉测量方法[J]. J4, 2012, 46(7): 1320-1326.
[9] 施锦河, 沈继忠, 王攀. 四类运动想象脑电信号特征提取与分类算法[J]. J4, 2012, 46(2): 338-344.
[10] 张大尉, 朱善安. 基于核邻域保持判别嵌入的人脸识别[J]. J4, 2011, 45(10): 1842-1847.
[11] 舒振宇, 汪国昭. 基于张量投票的快速网格分割算法[J]. J4, 2011, 45(6): 999-1005.
[12] 徐舒畅, 张三元, 张引. 基于彩色图像的皮肤色素浓度提取算法[J]. J4, 2011, 45(2): 253-258.
[13] 佘青山, 孟明, 罗志增, 马玉良. 基于多核学习的下肢肌电信号动作识别[J]. J4, 2010, 44(7): 1292-1297.
[14] 薛凌云, 段会龙, 向学勤, 范影乐. 基于FitzHughNaguno神经元随机共振机制的图像复原[J]. J4, 2010, 44(6): 1103-1107.
[15] 张远辉, 韦巍, 虞旦. 基于实时图像的乒乓机器人Kalman跟踪算法[J]. J4, 2009, 43(09): 1580-1584.