Please wait a minute...
J4  2010, Vol. 44 Issue (1): 174-179    DOI: 10.3785/j.issn.1008-973X.2010.01.031
土木与建筑工程     
覆冰三分裂导线气动力特性的数值模拟
吕翼1,楼文娟1,孙珍茂1,李宏男2
(1.浙江大学 结构工程研究所,浙江 杭州 310027; 2.大连理工大学 土木水利学院,辽宁 大连 116024)
Numerical simulation of aerodynamic characteristics of three bundled iced transmission lines
LV Yi1, LOU Wen-juan1, SUN Zhen-mao1, LI Hong-nan2
(1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310027, China;
2. School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)
 全文: PDF  HTML
摘要:

采用有限体积法和SIMPLEC算法,求解雷诺数在亚临界区内的均匀黏性不可压缩流体的N-S方程,对风吹过平行布置的覆冰三分裂导线的气动力特性进行计算流体动力学(CFD)数值模拟.为克服数值模拟在高雷诺数下的数值不稳定性,在求解N-S方程时采用QUICK迎风格式,其对流项为三阶精度,其余项如扩散项等为二阶精度.针对新月形和扇形2种典型覆冰三分裂导线,分析平行布置的三分裂导线各子导线尾流间的相互作用及其对气动力特性的影响.计算结果表明,新月形覆冰导线比扇形覆冰导线舞动的风攻角范围大,但前者的舞动振幅小于后者;分裂导线中处于尾流区的子导线的气动力系数均小于迎风面子导线的气动力系数,且扇形覆冰导线比新月形覆冰导线更为显著.

Abstract:

The aerodynamic characteristics of wind blowing overthree parallel bundled iced transmission lines were simulated by computation fluid dynamics (CFD) technology. The finite volume method and the SIMPLEC algorithm were used to solve the Navier-Stokes equations for the uniform viscous and incompressible flow when Reynolds number was in sub-critical area. In order to overcome the numerical instability for high Reynolds number flows, quadratic up wind scheme (QUICK) was incorporated for the Navier-Stokes equations, which is of third-order accuracy for the advection and remains only second-order accuracy for other terms such as diffusion. The effect of the wake interaction on the aerodynamic characteristics was analyzed for crescent and fan-shaped iced three bundled transmission lines. The results show that the scope of negative Deng Hartog coefficient for the crescent iced transmission lines is wider than that for the fan-shaped iced transmission lines, but the fan-shaped iced transmission lines gallop more violent than the crescent iced transmission lines. The aerodynamic coefficient of the leeward line is smaller than that of the upward line, and this is more evident for fan-shaped iced lines than for crescent iced lines.

出版日期: 2010-02-26
:  TM 726.3  
基金资助:

国家自然科学基金重点资助项目(50638010).

通讯作者: 楼文娟,女,教授,博导.     E-mail: louwj@zju.edu.cn
作者简介: 吕翼(1983-),男,浙江杭州人,硕士生,主要从事结构抗风研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吕翼, 楼文娟, 孙珍茂, 等. 覆冰三分裂导线气动力特性的数值模拟[J]. J4, 2010, 44(1): 174-179.

LV Yi, LOU Wen-Juan, SUN Zhen-Mao, et al. Numerical simulation of aerodynamic characteristics of three bundled iced transmission lines. J4, 2010, 44(1): 174-179.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.01.031        http://www.zjujournals.com/eng/CN/Y2010/V44/I1/174

[1] NIGOL O, BUCHAN P G. Conductor galloping. Part I: Den Hardog mechanism [J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(5): 699-707.
[2] NIGOL O, BUCHAN P G. Conductor galloping. Part II: Torsional mechanism [J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(5): 708-720.
[3] 郭应龙,李国兴,尤传永. 输电线路舞动[M]. 北京:中国电力出版社, 2003.
[4] NARITA N, YOKOYAMA K. Cable-stayed bridges: recent developments and their future [C]∥ Proceedings of the Seminar. Yokohama: Elsevier, 1991:257-278.
[5] VRIJER A. Stability of vertically movable gates (in water flow) \
[C\]∥Proceedings of the TAHR/ Iutam Symposium on Practical Experiences with Flow-Induced Vibration. Karlsruhe: Springer-Verlag,1979.
[6] NAGAO F, UTSUNOMIYA H, UTSUNOMIYA M, et al. Aero-dynamic properties of closely spaced triple circular cylinders [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 75-82.
[7] 黄河,刘建军,李万平. 覆冰导线气动力特性的数值模拟[J]. 工程力学, 2003(增刊): 201-204.
HUANG He, LIU Jian-jun, LI Wan-ping. Numerical simulation of iced transmission lines [J]. Engineering Mechanics, 2003(Suppl.): 201-204.
[8] 吕翼. 覆冰导线气动力特性数值模拟研究[D]. 杭州:浙江大学, 2008.
LV Yi. Numerical simulation of aerodynamic characteristics of iced transmission lines [D]. Hangzhou: Zhejiang University, 2008.
[9] 李万平,杨新祥,张立志. 覆冰导线群的静气动力特性[J]. 空气动力学学报, 1995, 13(4): 427-433.
LI Wan-ping, YANG Xin-xiang, ZHANG Li-zhi. Static aerodynamic characteristics of the galloping of bundled power transmission lines [J]. Acta Aerodynamica Sinica, 1995, 13(4): 427-433.
[10] 李万平,黄河,何埕. 覆冰导线群的动态气动力特性[J].空气动力学学报, 2001, 18(4): 413-420.
LI Wan-ping, HUANG He, HE Cheng. Dynamic aerodynamic characteristics of the galloping of bundled iced power transmission lines [J]. Acta Aerodynamica Sinica, 2001, 18(4): 413-420.
[11] 陈水福,孙炳楠,唐锦春. 建筑表面风载的计算机模拟[J]. 工程设计CAD与智能建筑, 2002(5): 25-27.
CHEN Shui-fu, SUN Bing-nan, TANG Jing-chun. Numerical simulation of wind-load on structures [J]. Computer Aided Design and Intelligent Building, 2002(5): 25-27.
[12] 杨伟,顾明. 高层建筑三维定常风场数值模拟[J]. 同济大学学报, 2003, 31(6): 649-651.
YANG Wei, GU Ming. Numerical simulation of steady flow around a 3D high-rise building [J]. Jounal of Tongji University, 2003, 31(6): 649-651.
[13] CHANG C H, MERONEY R N. Numerical and physical modeling of bluff body flow and dispersion in urban street canyons[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14/15): 1325-1334.

[1] 楼文娟,孙珍茂,许福友,李宏男,王昕. 输电导线扰流防舞器气动力特性风洞试验研究[J]. J4, 2011, 45(1): 93-98.