Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (1): 41-50    DOI: 10.3785/j.issn.1008-9292.2018.02.06
原著     
脓毒性急性肾损伤小鼠线粒体DNA损伤修复相关基因的筛选
杨静娟(),吴峰峰,陈江华,杨毅*()
浙江大学医学院附属第一医院肾脏病中心, 浙江 杭州 310003
Screening of mitochondrial DNA damage repair genes in rats with septic acute kidney injury
YANG Jingjuan(),WU Fengfeng,CHEN Jianghua,YANG Yi*()
Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(1272 KB)   HTML( 13 )
摘要:

目的: 筛选脓毒性急性肾损伤(SAKI)中参与线粒体DNA(mtDNA)损伤修复的相关基因。方法: 40只清洁级雄性C57BL/6J小鼠随机分为SAKI组(28只)和对照组(12只)。采用盲肠结扎穿刺术建立SAKI小鼠模型。分别于术后8、24、48 h采集两组的血液和肾脏标本,干式生化仪检测血清肌酐和尿素氮,ELISA法检测血清炎症因子表达水平;HE染色观察肾脏组织病理学变化。RNA测序和生物信息学分析筛选mtDNA损伤修复相关基因;实时定量RT-PCR法和免疫组织化学法检测相关基因的mRNA和蛋白表达水平。结果: SAKI组小鼠术后均出现脓毒症症状,死亡16只;血清炎症因子(TNF-α和IL-6)、肌酐和尿素氮水平均高于对照组(P < 0.05或P < 0.01);肾小管上皮细胞肿胀,炎症细胞浸润,并可见大量细胞空泡形成,提示建模成功。生物信息学分析筛选出Gadd45αBcl2l1Cdkn1aJunRelaNfkbiaNfkb1等线粒体DNA损伤修复相关基因,实时定量RT-PCR检测以上基因表达量结果与RNA测序趋势一致。SAKI组Gadd45α主要在肾小管上皮细胞核中表达,其阳性表达率高于对照组(P < 0.05)。结论: Gadd45αBcl2l1Cdkn1aJunRelaNfkbiaNfkb1基因参与了SAKI中mtDNA损伤修复,可以作为SAKI防治的新靶点。

关键词: 脓毒症DNA损伤基因, 肿瘤抑制线粒体肾/损伤肾/病理学肾功能不全, 急性疾病模型, 动物    
Abstract:

Objective: To screen genes involved in mitochondrial DNA (mtDNA) damage repair in rats with septic acute kidney injury (SAKI). Methods: Forty male C57BL/6J mice were randomly divided into SAKI group (n=28) and sham operation group (n=12). The SAKI mouse model was established by cecal ligation and puncture. Blood and kidney samples were collected at 8, 24, and 48 h after surgery. Serum creatinine and urea nitrogen were measured by a dry biochemical analyzer. Serum inflammatory cytokines were detected by ELISA. Histopathological changes were observed with HE staining. The mtDNA damage repair related genes were screened by RNA sequencing and bioinformatics analysis; the mRNA and protein expression levels of related genes were detected by real-time quantitative RT-PCR and immunohistochemisry, respectively. Results: Symptoms of sepsis were observed in SAKI group, and 16 out of 28 mice were died in the SAKI group; serum TNF-α, IL-6, creatinine and urea nitrogen levels were higher than those in the sham group (P < 0.05 or P < 0.01). Histopathological examination in SAKI group showed that renal tubular epithelial cells were swollen, inflammatory cells infiltrated, and a large number of cell vacuoles were seen, suggesting successful modeling. Mitochondrial DNA damage repair related genes Gadd45α, Bcl2l1, Cdkn1a, Jun, Rela, Nfkbia and Nfkb1 were screened out. The expression of these genes was detected by real-time RT-PCR, and the results were consistent with RNA sequencing trends. Immunohistochemical staining showed that Gadd45α was mainly expressed in the nucleus of renal tubular epithelial cells, and the positive rate of Gadd45α in SAKI group was higher than that in the sham operation group (P < 0.05). Conclusion: Gadd45α, Bcl2l1, Cdkn1a, Jun, Rela, Nfkbia and Nfkb1 genes are involved in mtDNA damage repair in rats with SAKI, indicating that these genes may be used as new targets for prevention and treatment of SAKI.

Key words: Sepsis    DNA damage    Genes, tumor suppressor    Mitochondria    Kidney/injuries    Kidney/pathology    Renal insufficiency, acute    Disease models, animal
收稿日期: 2017-09-28 出版日期: 2018-06-12
CLC:  R36  
基金资助: 国家自然科学基金(81670621);浙江省自然科学基金(LY16H050001)
通讯作者: 杨毅     E-mail: jingjuyang@126.com;yangyixk@zju.edu.cn
作者简介: 杨静娟(1993-), 女, 硕士研究生, 主要从事脓毒症和肾脏疾病的研究; E-mail:jingjuyang@126.com; https://orcid.org/0000-0002-4671-2519
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨静娟
吴峰峰
陈江华
杨毅

引用本文:

杨静娟,吴峰峰,陈江华,杨毅. 脓毒性急性肾损伤小鼠线粒体DNA损伤修复相关基因的筛选[J]. 浙江大学学报(医学版), 2018, 47(1): 41-50.

YANG Jingjuan,WU Fengfeng,CHEN Jianghua,YANG Yi. Screening of mitochondrial DNA damage repair genes in rats with septic acute kidney injury. J Zhejiang Univ (Med Sci), 2018, 47(1): 41-50.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.02.06        http://www.zjujournals.com/med/CN/Y2018/V47/I1/41

引物名称 引物序列(5′→3′)
Gadd45α 正向:CTGCAGAGCAGAAGACCGAA
反向:GGGTCTACGTTGAGCAGCTT
Bcl2l1 正向:GGAGAGCGTTCAGTGATC
反向:AGGTGGTCATTCAGATAGGT
Jun 正向:ACGACCTTCTACGACGAT
反向:CATTGCTGGACTGGATGAT
Cdkn1a 正向:GTGATGTCCGACCTGTTC
反向:TCAAAGTTCCACCGTTCTC
Rela 正向:GGCATCTGTGGACAACTC
反向:CGCAATGGAGGAGAAGTC
Nfkbia 正向:GCCAGTGTAGCAGTCTTG
反向:CAGGTAGCCGTGGATAGA
Nfkb1 正向:CAAGAGTGATGACGAGGAG
反向:GTGGATGATGGCTAAGTGTA
Gapdh 正向:CATGGCCTTCCGTGTTCCTA
反向:CCTGCTTCACCACCTTCTTGAT
表 1  实时定量RT-PCR引物序列
图 1  SAKI组与对照组血清炎症因子、肌酐和尿素氮表达水平比较
图 2  SAKI组与对照组肾脏组织病理学表现(HE染色)
图 3  SAKI组与对照组差异表达基因火山图
序号 信号通路名称 基因数 富集得分
  均P < 0.05.
1 BIOCARTA_RELA_PATHWAY 16 0.731 220
2 BIOCARTA_AMI_PATHWAY 15 0.759 689
3 BIOCARTA_AKT_PATHWAY 17 0.652 274
4 BIOCARTA_ALK_PATHWAY 29 0.180 719
5 BIOCARTA_AT1R_PATHWAY 30 0.463 202
6 BIOCARTA_CHEMICAL_PATHWAY 20 0.338 688
7 BIOCARTA_SPPA_PATHWAY 19 0.295 740
8 BIOCARTA_ATM_PATHWAY 18 0.574 498
9 BIOCARTA_BCR_PATHWAY 33 0.370 569
10 BIOCARTA_BIOPEPTIDES_PATHWAY 38 0.264 800
11 BIOCARTA_CASPASE_PATHWAY 21 0.712 487
12 BIOCARTA_CCR3_PATHWAY 20 0.310 291
13 BIOCARTA_CD40_PATHWAY 15 0.626 474
14 BIOCARTA_G1_PATHWAY 24 0.302 741
15 BIOCARTA_G2_PATHWAY 21 0.404 999
16 BIOCARTA_CERAMIDE_PATHWAY 21 0.531 168
17 BIOCARTA_TID_PATHWAY 17 0.576 491
18 BIOCARTA_GCR_PATHWAY 17 0.583 920
19 BIOCARTA_CTCF_PATHWAY 20 0.472 224
20 BIOCARTA_CELLCYCLE_PATHWAY 20 0.348 596
表 2  两组差异表达基因功能富集分析所得前20条相关信号通路
基因 排名得分 富集得分 核心富集
  ATM:毛细血管扩张共济失调突变.
Cdkn1a 3.694 151 0.169 178
Nfkbia 2.551 620 0.279 946
Gadd45α 2.287 872 0.388 357
Jun 1.479 635 0.421 320
Rela 1.376 330 0.483 236
Nfkb1 1.167 506 0.523 231
Rad51 0.947 872 0.533 983
Brca1 0.877 482 0.563 427
Rad50 0.682 282 0.546 523
Mre11a 0.619 685 0.558 859
Mdm2 0.579 492 0.574 498
表 3  ATM信号通路相关差异表达基因
基因 术后8 h 术后24 h 术后48 h
log2(倍数变化) P log2(倍数变化) P log2(倍数变化) P
Ucp2 1.545 837 765 0.000 0 2.421 564 0.000 0 -0.232 888 755 0.000 1
Ucp3 2.005 799 517 0.019 1 1.877 483 0.023 9 -0.022 749 298 0.655 0
Bcl2l1 0.966 255 449 0.000 0 1.418 362 0.000 0 0.136 584 293 0.032 7
Txnrd1 0.633 360 128 0.000 0 1.394 716 0.000 0 0.226 891 292 0.000 0
Ung 0.420 837 016 0.164 8 1.362 909 0.000 0 0.392 288 202 0.283 3
Cry1 2.212 250 395 0.000 0 1.230 154 0.000 0 0.939 775 997 0.002 5
Ephx2 0.076 290 019 0.049 5 1.202 637 0.000 0 0.113 014 758 0.009 4
Trmt11 -0.232 064 313 0.178 3 1.038 919 0.000 0 0.676 802 335 0.000 1
Aifm3 -1.001 395 984 0.000 0 -1.084 27 0.000 0 -0.150 239 033 0.336 5
Cpt1c -2.203 653 849 0.000 0 -1.162 05 0.005 0 -0.910 274 568 0.043 5
Msrb2 -1.083 997 153 0.000 0 -1.186 08 0.000 0 -0.258 678 473 0.022 5
Alas2 1.274 288 353 0.000 0 -1.274 52 0.000 0 1.325 174 006 0.000 0
Sept4 -1.297 047 836 0.000 0 -1.365 54 0.000 0 -0.110 745 779 0.346 6
Gstk1 -0.254 009 677 0.000 3 -1.671 25 0.000 0 -0.197 267 995 0.009 8
Mpv17l 0.076 453 114 0.000 0 -2.021 58 0.000 0 -1.680 361 986 0.000 0
Idh1 -1.407 372 317 0.000 0 -2.546 52 0.000 0 0.104 786 086 0.000 0
表 4  线粒体氧化应激和DNA损伤修复相关基因筛选结果
图 4  ATM信号通路相关差异表达基因与线粒体相关基因编码蛋白质的相互作用网络图
基因 术后8 h 术后24 h 术后48 h
log2倍数变化 P log2倍数变化 P log2倍数变化 P
Gadd45α 1.825 227 0.000 0 2.287 872 0.000 0 -0.033 4 0.590 9
Bcl2l1 0.966 255 0.000 0 1.418 362 0.000 0 0.136 584 0.032 7
Cdkn1a 3.114 603 0.000 0 3.694 151 0.000 0 1.681 139 0.000 0
Jun 0.861 052 0.000 0 1.479 635 0.000 0 -0.805 31 0.000 0
Rela 0.823 518 0.000 0 1.376 33 0.000 0 0.093 765 0.000 0
Nfkbia 1.904 727 0.000 0 2.551 62 0.000 0 0.712 892 0.000 0
Nfkb1 0.149 964 0.000 0 1.167 506 0.000 0 -0.188 24 0.000 0
表 5  两组蛋白质相互作用相关基因RNA测序结果
图 5  SAKI组与对照组肾脏组织mtDNA损伤修复相关基因的表达水平比较
图 6  SAKI组与对照组肾脏组织中Gadd45α蛋白的表达
1 LAFRANCE J P , MILLERD R . Acute kidney injury associates with increased long-term mortality[J]. J Am Soc Nephrol, 2010, 21 (2): 345- 352
doi: 10.1681/ASN.2009060636
2 HOSTE E A , LAMEIRE N H , VANHOLDER R C et al. Acute renal failure in patients with sepsis in a surgical ICU:predictive factors, incidence, comorbidity, and outcome[J]. J Am Soc Nephrol, 2003, 14 (4): 1022- 1030
doi: 10.1097/01.ASN.0000059863.48590.E9
3 MAIDEN M J , OTTO S , BREALEY J K et al. Structure and function of the kidney in septic shock. A prospective controlled experimental study[J]. Am J Respir Crit Care Med, 2016, 194 (6): 692- 700
doi: 10.1164/rccm.201511-2285OC
4 GRAY M W , BURGER G , LANGB F . Mitochondrial evolution[J]. Science, 1999, 283 (5407): 1476- 1481
doi: 10.1126/science.283.5407.1476
5 D?LLE C , FL?NES I , NIDO G S et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease[J]. Nat Commun, 2016, 7 13548
doi: 10.1038/ncomms13548
6 EMMA F , MONTINI G , PARIKH S M et al. Mitochondrial dysfunction in inherited renal disease and acute kidney injury[J]. Nat Rev Nephrol, 2016, 12 (5): 267- 280
doi: 10.1038/nrneph.2015.214
7 PARIKH S M , YANG Y , HE L et al. Mitochondrial function and disturbances in the septic kidney[J]. Semin Nephrol, 2015, 35 (1): 108- 119
doi: 10.1016/j.semnephrol.2015.01.011
8 BROOKS C , WEI Q , CHO S G et al. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models[J]. J Clin Invest, 2009, 119 (5): 1275- 1285
doi: 10.1172/JCI37829
9 RITTIRSCH D , HUBER-LANG M S , FLIERL M A et al. Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Protoc, 2009, 4 (1): 31- 36
doi: 10.1038/nprot.2008.214
10 GULERIA A , CHANDNA S . ATM kinase:much more than a DNA damage responsive protein[J]. DNA Repair(Amst), 2016, 39 1- 20
doi: 10.1016/j.dnarep.2015.12.009
11 DUTTO I , TILLHON M , CAZZALINI O et al. Biology of the cell cycle inhibitor p21(CDKN1A):molecular mechanisms and relevance in chemical toxicology[J]. Arch Toxicol, 2015, 89 (2): 155- 178
doi: 10.1007/s00204-014-1430-4
12 WISDOM R , JOHNSON R S , MOORE C . c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms[J]. EMBO J, 1999, 18 (1): 188- 197
doi: 10.1093/emboj/18.1.188
13 HUANG Q , ZHAN L , CAO H et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways[J]. Autophagy, 2016, 12 (6): 999- 1014
doi: 10.1080/15548627.2016.1166318
14 MOSKALEV A A , SMIT-MCBRIDE Z , SHAPOSHNIKOV M V et al. Gadd45 proteins:relevance to aging, longevity and age-related pathologies[J]. Ageing Res Rev, 2012, 11 (1): 51- 66
doi: 10.1016/j.arr.2011.09.003
15 KEARSEY J M , COATES P J , PRESCOTT A R et al. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1[J]. Oncogene, 1995, 11 (9): 1675- 1683
16 MEYER N J , HUANG Y , SINGLETON P A et al. GADD45a is a novel candidate gene in inflammatory lung injury via influences on Akt signaling[J]. FASEB J, 2009, 23 (5): 1325- 1337
doi: 10.1096/fj.08-119073
17 SHIN G T , KIM D R , LIM J E et al. Upregulation and function of GADD45gamma in unilateral ureteral obstruction[J]. Kidney Int, 2008, 73 (11): 1251- 1265
doi: 10.1038/ki.2008.93
18 YU S , CHO J , PARK I et al. Urinary GADD45gamma expression is associated with progression of lgA nephropathy[J]. Am J Nephrol, 2009, 30 (2): 135- 139
doi: 10.1159/000209317
19 TAKEKAWA M , SAITO H . A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK[J]. Cell, 1998, 95 (4): 521- 530
doi: 10.1016/S0092-8674(00)81619-0
20 PAPA S , ZAZZERONI F , PHAM C G et al. Linking JNK signaling to NF-kappaB:a key to survival[J]. J Cell Sci, 2004, 117 (Pt 22): 5197- 5208
21 LIEBERMANN D A , HOFFMAN B . Gadd45 in the response of hematopoietic cells to genotoxic stress[J]. Blood Cells Mol Dis, 2007, 39 (3): 329- 335
doi: 10.1016/j.bcmd.2007.06.006
22 KARIN M , LIN A . NF-kappaB at the crossroads of life and death[J]. Nat Immunol, 2002, 3 (3): 221- 227
doi: 10.1038/ni0302-221
23 CHOI S , CHEN Z , TANG L H et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity[J]. Nat Commun, 2016, 7 10384
doi: 10.1038/ncomms10384
24 ZHOU F , YANG Y , XING D . Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis[J]. FEBS J, 2011, 278 (3): 403- 413
doi: 10.1111/j.1742-4658.2010.07965.x
25 PT S , ANDERSEN M H . The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens[J]. Oncotarget, 2010, 1 (4): 239- 245
26 XIE M , DOETSCH P W , DENG X . Bcl2 inhibition of mitochondrial DNA repair[J]. BMC Cancer, 2015, 15 586
doi: 10.1186/s12885-015-1594-1
[1] 蒋滟蕲, 杨雅兰, 杨婷, 李玥伶, 陈莉玲, 燕锦, 杨艳芳. UCP2 rs659366位点多态性与结直肠癌术后患者生存结局的关系[J]. 浙江大学学报(医学版), 2018, 47(2): 143-149.
[2] 郑静 等. 浙江省新生儿脂肪酸氧化代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 248-255.
[3] 王莉,王瑜,武海英. 尼克酰胺降低妊娠期糖尿病大鼠的血糖水平以及调控线粒体超氧水平研究[J]. 浙江大学学报(医学版), 2017, 46(2): 179-185.
[4] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[5] 马婷婷,王毅,陈晓倩,赵筱萍. 液相色谱-质谱联用导向的黄葵胶囊肾保护活性物质研究[J]. 浙江大学学报(医学版), 2017, 46(1): 66-73.
[6] 方敏波 等. 瞬时受体电位通道M2外显子单核苷酸多态性rs1556314与脓毒症的相关性分析[J]. 浙江大学学报(医学版), 2016, 45(4): 410-415.
[7] 郎夏冰 等. 中国住院患者急性肾损伤流行病学调查现状[J]. 浙江大学学报(医学版), 2016, 45(2): 208-213.
[8] 杨婉花等. MicroRNA-150联合脉搏指示连续性心输出量检测指标判断脓毒症休克患者预后的临床价值[J]. 浙江大学学报(医学版), 2015, 44(6): 659-664.
[9] 韩亮, 侯金超, 方向明. 苏拉明对脓毒症小鼠肺组织和循环炎症反应的抑制作用[J]. 浙江大学学报(医学版), 2015, 44(5): 553-558.
[10] 苗华,等. 联合应用基因表达谱和拷贝数变异信息探索结直肠癌分子亚型[J]. 浙江大学学报(医学版), 2014, 43(4): 420-426.
[11] 张翀, 周佳乐, 方洁, 张大勇, 王宝明, 陈瑞玲, 潘建平. TcpC诱导人血管内皮细胞凋亡及其机制[J]. 浙江大学学报(医学版), 2013, 42(5): 492-497.
[12] 姜翠翠, 夏满莉, 王敏, 陈士票. 右美托咪定预处理减轻离体大鼠心脏缺血/再灌注损伤的线粒体相关机制[J]. 浙江大学学报(医学版), 2013, 42(3): 326-330.
[13] 张潇芸, 姜英, 杨军. p53非依赖性信号通路在DNA损伤致细胞凋亡中的研究进展[J]. 浙江大学学报(医学版), 2013, 42(2): 217-223.
[14] . Wnt/β-catenin信号通路对间充质干细胞衰老的影响及其作用机制[J]. 浙江大学学报(医学版), 2012, 41(6): 630-640.
[15] . 人参皂苷Rg1经线粒体通路抗Aβ25-35致原代大鼠皮层神经元凋亡[J]. 浙江大学学报(医学版), 2012, 41(4): 393-401.